The road network serves as a hub for opportunities in production and consumption, resource extraction, and social cohabitation. In turn, this promotes a higher standard of living and the expansion of cities. This research explores the road network's spatial connectedness and its effects on travel and urban form in the Al-Kadhimiya and Al-Adhamiya municipalities. Satellite images and paper maps have been employed to extract information on the existing road network, including their kinds, conditions, density, and lengths. The spatial structure of the road network was then generated using the ArcGIS software environment. The road pattern connectivity was evaluated using graph theory indices. The study demands the abstraction and examination of the topological structure by choosing a few factors associated with the connection of the roads. These involved the cyclomatic number, Eta coefficient, Aggregate Transform Score (ATS), Beta, gamma, and Alpha indices. According to the findings, the Al-Adhamiya roads network is more developed, better linked, and has a higher overall connectivity value than the Al-Kadhimiya network. The two study areas, however, have minimal circuitry and high complexity. Due to the modifications and expansion of land use that the municipalities have seen, the research suggests that the transportation network should be developed to reach greater interconnectedness, particularly in locations outside the city center.
An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
This work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m
... Show MoreThe inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati
... Show MoreReservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is use
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreAttacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover. The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreThe research explain the analysis of finance investments through analyze the finance tables for commercial banks, by using the pointers to indicate the limits of economical benefit for these investments, and fix the negative deviations and as well positive, for the purpose of diagnostic the negative (disadvantage) and develop the advantage deviation, For the importance of finance investments in the development operation and economical growth, further to that the finance investments is represent one of the most activities in the commercial banks in which aim the adequate incomes as a result of the commercial banks act to receipt the banks deposits and then make it growth and develop through commercial advantage o
... Show MoreA sensitivity-turbidimetric method at (0-180o) was used for detn. of mebeverine in drugs by two solar cell and six source with C.F.I.A.. The method was based on the formation of ion pair for the pinkish banana color precipitate by the reaction of Mebeverine hydrochloride with Phosphotungstic acid. Turbidity was measured via the reflection of incident light that collides on the surface particles of precipitated at 0-180o. All variables were optimized. The linearity ranged of Mebeverine hydrochloride was 0.05-12.5mmol.L-1, the L.D. (S/N= 3)(3SB) was 521.92 ng/sample depending on dilution for the minimum concentration , with correlation coefficient r = 0.9966while was R.S.D%
... Show More