Preferred Language
Articles
/
joe-1821
Automatic Spike Neural Technique for Slicing Bandwidth Estimated Virtual Buffer-Size in Network Environment
...Show More Authors

The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modified to achieve QoS using Artificial Intelligence (AI) and machine learning (ML). Developing an intelligent decision-making system for network management and reducing network slice failures requires reconfigurable wireless network solutions with machine learning capabilities. Using Spiking Neural Network (SNN) and prediction, we have developed a 'Buffer-Size Management' model for controlling network load efficiency by managing the slice's buffer size. To analyze incoming traffic and predict the network slice buffer size; our proposed Buffer-Size Management model can intelligently choose the best amount of buffer size for each slice to reduce packet loss ratio, increase throughput to 95% and reduce network failure by about 97%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Computers, Materials & Continua
An Optimal Method for Supply Chain Logistics Management Based on Neural Network
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Solid State Technology
Image Fusion Using A Convolutional Neural Network
...Show More Authors

Image Fusion Using A Convolutional Neural Network

Publication Date
Sun Jun 01 2008
Journal Name
2008 Ieee International Joint Conference On Neural Networks (ieee World Congress On Computational Intelligence)
Linear block code decoder using neural network
...Show More Authors

View Publication
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Automatic human ear detection approach using modified adaptive search window technique
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Oct 13 2022
Journal Name
Computation
A Pattern-Recognizer Artificial Neural Network for the Prediction of New Crescent Visibility in Iraq
...Show More Authors

Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Intelligent Systems
Trip generation modeling for a selected sector in Baghdad city using the artificial neural network
...Show More Authors
Abstract<p>This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to</p> ... Show More
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref