The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modified to achieve QoS using Artificial Intelligence (AI) and machine learning (ML). Developing an intelligent decision-making system for network management and reducing network slice failures requires reconfigurable wireless network solutions with machine learning capabilities. Using Spiking Neural Network (SNN) and prediction, we have developed a 'Buffer-Size Management' model for controlling network load efficiency by managing the slice's buffer size. To analyze incoming traffic and predict the network slice buffer size; our proposed Buffer-Size Management model can intelligently choose the best amount of buffer size for each slice to reduce packet loss ratio, increase throughput to 95% and reduce network failure by about 97%.
Background :Evening preparation for colonoscopy is often unsatisfactory and inconvenient. This study was performed to compare the efficacy of bowel preparation at two different timings: night before and morning of endoscopy and to compare the cecal intubation rate and disturbance of sleep hours between these two groups.
Methods: In this prospective randomized endoscopist- blinded trial, 150 patients were enrolled between March 2010 and August 2011. Patients aged between 18 to 80 years needing colonoscopy were included. Patients with prior bowel surgery, suspected bowel obstruction or those who didn't completely fulfill the preparation instructions were excluded. Patients received polyethyelen glycol electrolyte preparation in a mornin
Invasomes are newly developed types of nanovesicles. A vesicular drug delivery system is considered one of the approaches for transdermal delivery to enhance permeation and improve drug bioavailability. Ondansetron is a serotonin receptor antagonist used for treating vomiting associated with different clinical cases. The study aimed to prepare invasomal dispersions for improving permeation of ondansetron across the skin with a controlled release pattern. Twenty-seven formulas of ondansetron-loaded invasomes were prepared by a modified mechanical dispersion method. These formulas were optimized by studying the effect of variables on entrapment efficiency. Vesicle size, polydispersity, zeta potential, in-vitro release and ex-vivo perm
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
The modification of hydrophobic rock surfaces to the water-wet state via nanofluid treatment has shown promise in enhancing their geological storage capabilities and the efficiency of carbon dioxide (CO2) and hydrogen (H2) containment. Despite this, the specific influence of silica (SiO2) nanoparticles on the interactions between H2, brine, and rock within basaltic formations remains underexplored. The present study focuses on the effect of SiO2 nanoparticles on the wettability of Saudi Arabian basalt (SAB) under downhole conditions (323 K and pressures ranging from 1 to 20 MPa) by using the tilted plate technique to measure the contact angles between H2/brine and the rock surfaces. The findings reveal that the SAB's hydrophobicity intensif
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The Iraqi market for securities in light of financial globalization faces real challenges at the local and international levels, which were reflected in their shadows on the overall economic reality, which imposed the necessity of making fundamental changes in terms of form and content, and from here stems the research problem in the ability of the Iraqi stock market to adapt to the transformations Financial imposed by financial globalization in light of the weakness of the economic structure and its position in the global economy. The research starts from the hypothesis that the Iraqi market for securities in light of financial globalization has an important and significant role in the economic field, through its role in stimula
... Show More