Zinc Oxide is an indispensable substance in the field of dental treatment. It is used daily and intensively in all governmental and private dental clinics, leading to the disposal of very high concentrations of zinc with waste and eventually in landfill sites as a final destination for solid waste removal. This indicates the urgent need to investigate its behavior upon disposal due to the surrounding conditions. Approximately 4195 g of mixed dental waste samples were collected from (17) healthcare centers in Baghdad Al-Karkh. The leaching behavior of ZnO powder was investigated through batch reactors using makeup dental solid waste samples. The ZnO leaching was tested with 3 conditions; acidic, alkaline, and Ionic Strength (IS). The acidic condition was considered the most hazardous condition compared with basic and salinity due to the increasing tendency of ZnO to release Zn ion within waste leachate. In solutions with low pH, the dissolution of ZnO tends to produce zinc ions due to the attack of the ZnO surface by proton. In solutions of pH more than 9, the degradation of zinc oxide produces hydroxide complexes. Increasing (IS) decreased zinc concentration in leachate samples with time by promoting solids aggregation, decreasing the repulsive forces of ZnO particles, and accumulating in the bottom of reactors.
Abstract:
Viral marketing has become one of the modern strategies adopted by organizations in the marketing of products and services. The idea of viral marketing focuses on the social relations between individuals and groups. As a result of the technological development, most organizations have resorted to using the Internet and its applications and social media to market and promote their products. To reach the largest number of consumers to display their products and services in many ways, including text, audio, visual or video and thus affect the behavior of the consumer.
The problem of the study was the following question (do viral marketing technologies have an impact on consumer behavior?)
... Show MoreIn this research paper, two techniques were used to treat the drill cuttings resulting from the oil-based drilling fluid. The drill cuttings were taken from the southern Rumaila fields which prepared for testing and fixed with 100 gm per sample and contaminated with two types of crude oil, one from Rumaila oilfields with Sp.gr of 0.882 and the other from the eastern Baghdad oilfield with Sp.gr of 0.924 besides contamination levels of 10% and 15% w/w in mass. Samples were treated first with microwave with a power applied of 540 & 180 watts as well as a time of 50 minutes. It was found that the results reached below 1% w/w in mass, except for two samples they reached below 1.5% w/w in mass. Then, the sample of 1.41% w/w in mass,
... Show MoreMost dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way A
... Show MoreChoosing an appropriate impression material is a challenge for many dentists, yet an essential component to provide an excellent clinical outcome and improve productivity and profit. The purpose of present study was to compare wettability, tear strength and dimensional accuracy of three elastomeric impression materials, with the same consistencies (light-body). Three commercially available light body consistency and regular set 3M ESPE Express polyvinylsiloxane (PVS), 3M ESPE Permadyne polyether (PE), and Identium (ID), impression materials were comparedTear strength test, contact angle test and linear dimensional accuracy were evaluated for three elastic impression material. Among the three experimental groups PE impression materia
... Show MoreAbstract
The present study investigates the effect of acetic acid on corrosion behavior and its potential of hydrothermally sealed anodized AA2319-Al-alloys. Anodizing treatment was performed in stagnant phosphoric acid electrolyte with or without addition of acetic acid. Hydrothermal sealing was carried out in boiling water for each anodized specimen. The open circuit potential of the unsealed and sealed anodized samples was examined using open circuit potential measurement for the purpose of starting in scanning polarization diagrams. The potentiostatic polarization technique measurements were performed to assess corrosion behavior and sealing quality (i.e., degree of sealing) of
... Show MoreComputational study of three-dimensional laminar and turbulent flows around electronic chip (heat source) located on a printed circuit board are presented. Computational field involves the solution of elliptic partial differential equations for conservation of mass, momentum, energy, turbulent energy, and its dissipation rate in finite volume form. The k-ε turbulent model was used with the wall function concept near the walls to treat of turbulence effects. The SIMPLE algorithm was selected in this work. The chip is cooled by an external flow of air. The goals of this investigation are to investigate the heat transfer phenomena of electronic chip located in enclosure and how we arrive to optimum level for cooling of this chip. These par
... Show MorePolymer electrolytes were prepared using the solution cast technology. Under some conditions, the electrolyte content of polymers was analyzed in constant percent of PVA/PVP (50:50), ethylene carbonate (EC), and propylene carbonate (PC) (1:1) with different proportions of potassium iodide (KI) (10, 20, 30, 40, 50 wt%) and iodine (I2) = 10 wt% of salt. Fourier Transmission Infrared (FTIR) studies confirmed the complex formation of polymer blends. Electrical conductivity was calculated with an impedance analyzer in the frequency range 50 Hz–1MHz and in the temperature range 293–343 K. The highest electrical conductivity value of 5.3 × 10-3 (S/cm) was observed for electrolytes with 50 wt% KI concentration at room
... Show More