Cowpea is a very important legume in Nigeria that is being utilized to Substitute high-cost animal protein for low-income people. The knowledge of some physical properties of various moisture contents is of utmost importance in the design of its handling and processing equipment and machinery, which is the aim of this work, which studied the physical properties of IT99K-573-1-1 (SAMPEA14) variety of Cowpea within 8.77 to 21.58 % db moisture content. The properties studied include Major, Intermediate, and Minor diameters, Sphericity, Surface area, Specific gravity, Volume, Bulk density, 50-tap density, 100-tap density, 1250-tap density, seed mass, Angle of repose, Geometric mean diameter, and Arithmetic mean diameter. The obtained results indicate that the Size, Sphericity, Geometric, Arithmetic diameter, Surface area, and seed mass increase linearly with an increase in moisture content by 13.8%, 27.4%, and 16.1% for the size, respectively. While sphericity rises by 7.5% and geometric mean diameter, arithmetic mean diameter, surface area, and grain mass increase by 22.2%, 20.7%, 24.9%, and 16.11%, respectively. Specific gravity, density, and repose angle were inversely linearly related to moisture content. Regression equations for each of the properties related to the grains' moisture content were developed.
Sludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreIn this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phas
The main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the
... Show MoreThe effect of 0.662MeV gamma radiation on the optical properties of the CdTe thin films was studied. 300nm thickness of CdTe samples were irradiated with doses (10, 20, 30,60krad) in room temperature. The absorption spectra for all the samples were recorded using UV- Visible spectrometer in order to calculate the energy gap, width of localized states and optical constants(refractive index, extinction coefficient, real and imaginary parts of dielectric constant). The optical energy gap was found to decrease from (1.53 to 1.48 eV), while the width of localized states increased from (1.34 to 1.49 eV) with the increasing of radiation dose. The behavior of energy gap with the irradiation dose makes the material a good candidate for dosimetry
... Show MoreIn This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show MoreBackground: Body image is one of the most important psychological factors that affects adolescents’ personality and behavior. Body image can be defined as the person’s perceptions, thoughts, and feelings about his or her body.
Objectives: to identify the prevalence of body image concerns among secondary school students and its relation to different factors.
Subjects and methods: A cross-sectional study conducted in which 796 secondary school students participated and body shape concerns was investigated using the body shape questionnaire (BSQ-34).
Results: The prevalence of moderate/marked concern was (21.6%). Moderate/ marked body shape concern was significantly associated
... Show MoreIn this work was prepared three different types of modified screen printed carbon electrode (SPCEs) with drops casted method, the used carbone nanomaterials were the MWCNT, functionalized –MWCNT (f-MWCNT) and After several experiments were made to find an appropriate ratio to make good GOT/f-MWCNT nanocomposite, and found the suspension mixture (1:1) from GOT/f-MWCNT (f-MWCNT-GOT). The electrical and physical properties were performed with cyclic voltammeter technique, and studied the maximum current response, the effective surface area, effect of the pH value and the determination of active surface area for MWCNT-SPCE , f-MWCNT-SPCE and f-MWCNT-GOT/SPCE as (0.04 cm2), (0.119 cm2) and (0.115 cm2) respectively, the surface coverage concent
... Show MoreIn this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.
The present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures