Corrosion inhibiting admixtures are unique among other methods to protect reinforced concrete from corrosion damage. In this study, the effect of furfural on the fresh and hardened properties of concrete mixes of 35 and 45 MPa compressive strengths as well as the corrosion inhibition of furfural was evaluated. Furfural was added at different dosages (1, 2 and 3% by weight of cement) with and without superplasticizer (HRWR). Different electrochemical measurements were performed (Half-cell potential, Tafel plot and linear polarization resistance). Electrochemical measurements confirmed that furfural dramatically reduces the rate of corrosion; the inhibition efficiencies were 62.7 and 63.8 % due to 3% furfural addition to 35 and 45MPa-concretes respectively. Results also showed that the combined presence of furfural and HRWR was found to provide an excellent corrosion protection to steel.
In this paper, a methodology is presented for determining the stress and strain in structural concrete sections, also, for estimating the ultimate combination of axial forces and bending moments that produce failure. The structural concrete member may have a cross-section with an arbitrary configuration, the concrete region may consist of a set of subregions having different characteristics (i.e., different grades of concretes, or initially identical, but working with different stress-strain diagrams due to the effect of indirect reinforcement or the effect of confinement, etc.). This methodology is considering the tensile strain softening and tension stiffening of concrete in additio
Laboratory experience in Iraq with cold asphalt concrete mixtures is very limited. The design and use of cold mixed asphalt concrete had no technical requirements. In this study, two asphalt concrete mixtures used for the base course were prepared in the laboratory using conventional cold-mixing techniques to test cold asphalt mixture (CAM) against aging and moisture susceptibility. Cold asphalt mixtures specimens have been prepared in the lab with cutback and emulsion binders, different fillers, and curing times. Based on the Marshal test result, the cutback proportion was selected with the filler, also based on the Marshal test emulsion. The first mixture was medium setting cationic emulsion (MSCE) as a binder, hydrate
... Show MoreThe excessive permanent deformation (rutting) in asphalt-concrete pavements resulting from frequent repetitions of heavy axle loads is studied in this paper. Rutting gradually develops with additional load applications and appears as longitudinal depressions in the wheel path. There are many causes of the rutting of asphalt roads, such as poor asphalt mixing and poor continuous aggregate gradation. All factors affecting the mixture resistance to permanent deformation must be discussed, and all must be properly considered to reduce the rutting propensity of asphalt-aggregate mixtures. In this study, several mixtures were produced with the most common techniques in rutting resistance (using the most effective additives for each mixture), and
... Show MoreIn this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated
... Show MoreStructural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi
This paper is devoted to investigate the effect of burning by fire flame on the behavior and load carrying capacity of rectangular reinforced concrete rigid beams. Reduced scale beam models (which are believed to resemble as much as possible field conditions) were suggested. Five end restrained beam specimens were cast and tested. The specimens were subjected to fire flame temperatures ranging from (25-750) ºC at age of 60 days, two temperature levels of 400ºC and 750ºC were chosen with exposure duration of 1.5 hour. The cast rectangular reinforced concretebeam (2250×375×375 mm) (length× width× height respectively) were subjected to fire. Results indicate remarkable reduction in the ultrasonic pulse velocity and rebound number of
... Show More
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show MoreThis paper presents theoretical parametric study of the curvature ductility capacity for reinforced concrete column sections. The study considers the behavior of concrete and reinforcing steel under different strain rates. A computer program has been written to compute the curvature ductility taking into account the spalling in concrete cover. Strain rate sensitive constitutive models of steel and concrete were used for predicting the moment-curvature relationship of reinforced concrete columns at different rate of straining. The study parameters are the yield strength of main reinforcement, yield strength of transverse reinforcement, compressive strength of concrete, spacing of ties and the axial load. The results indicated that hi
... Show MoreReflective cracking is one of the primary forms of deterioration in pavements. It is widespread when Asphalt concrete (AC) overlays are built over a rigid pavement with discontinuities on its surface. Thus, this research work aims to reduce reflection cracks in asphalt concrete overlay on the rigid pavement. Asphalt Concrete (AC) slab specimens were prepared in three thicknesses (4, 5, and 6 cm). All these specimens were by testing machine designed and manufactured at the Engineering Consulting Office of the University of Baghdad to examine for the number of cycles and loads needed to propagate the reflection cracking in the asphalt concert mixture at three temperatures (20, 30, and 30°C). It was noticed that the higher thickness A
... Show MoreThis experimental study demonstrates the gable-reinforced concrete beams’ behavior with several number of openings (six and eight) and posts’ inclination, aimed to find the strength reduction in this type of beam. The major results found are: for the openings extending over similar beam length it is better to increase the number of posts (openings),