Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's performance was evaluated, and tests were run. Line-to-ground faults were examined. The study demonstrates how effective, rapid, and precise this method is at locating faults. The neural network's performance was examined, and tests were run on it. The overall performance of the mean square error in the trained network execution was 0.11792 at 35 epochs. The correlation coefficient at the entire target was 0.99987 percent of an error on the Doukan-Erbil double transmission lines.
Background: One of the most common problems that encountered is postburn contracture which has both functional and aesthetic impact on the patients. Various surgical methods had being proposed to treat such problem. Aim: To evaluate the effectiveness of square flap in management of postburn contracture in several part of the body. Patients and methods: From April 2019 to June 2020 a total number of 20 patients who had postburn contracture in various parts of their body were subjected to scar contracture release using square flap. The follow up period was ranging between 6 months to 12 months. Results: All of our patients had achieved complete release of their band with maximum postoperative motion together with accepted aesthetic outcome. A
... Show MoreAbstract
The public budget in Iraq is still prepared according to the traditional base that allocates the amounts of budget the current year based on the budget of previous year with an increase in estimations with random proportions without connecting the input (financial, human resources and asset )with their output (quantitatively and qualitatively)this caused waste and lose in the available resources therefore the output of budget showed be adapted is such a way that achieving connection between its input and output and to be appropriate with the organizational structure of the state without intrinsic change in its work .this may be realized by adopting the accounting of
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreAn ultrasonic treatment was applied to the vacuum gas oil at intervals of 5 to 30 minutes, at 70°C. In this work, the improvement of the important properties of Iraqi vacuum gas oil, such as carbon residue, was studied with several parameter conditions that affect vacuum efficiency, such as sonication time (5, 10, 15, 20, 25, and 30) min, power amplitude (10–50%). After ultrasonic treatment, the carbon residue of vacuum gas oil was evaluated using a Conradson carbon residue meter (ASTM D189). The experiment revealed that the oil's carbon residue had decreased by 16%. As a consequence of the experiment It was discovered that ultrasonic treatment might reduce the carbon residual and density of oil samples being studied. It also notice
... Show MoreA group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.
Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.
Abstract The wavelet shrink estimator is an attractive technique when estimating the nonparametric regression functions, but it is very sensitive in the case of a correlation in errors. In this research, a polynomial model of low degree was used for the purpose of addressing the boundary problem in the wavelet reduction in addition to using flexible threshold values in the case of Correlation in errors as it deals with those transactions at each level separately, unlike the comprehensive threshold values that deal with all levels simultaneously, as (Visushrink) methods, (False Discovery Rate) method, (Improvement Thresholding) and (Sureshrink method), as the study was conducted on real monthly data represented in the rates of theft crimes f
... Show MoreThe research of three-based financial indicators to create value for shareholders, have been identified research problem in a number of the questions revolved around the extent to which it can express its based performance metrics to create value for the essence and the reality of the surveyed enterprises performance, Can the departments surveyed companies to choose the scale or the most harmonizing index and an expression of the actual performance of the company, has the goal of research is to diagnose the strengths and weaknesses in the performance of the surveyed enterprises through the use of a number of based on the concept of creating economic value and the search for the most suitable indicator to the reality of the perfor
... Show MoreOne of the main techniques to achieve phase behavior calculations of reservoir fluids is the equation of state. Soave - Redlich - Kwong equation of state can then be used to predict the phase behavior of the petroleum fluids by treating it as a multi-components system of pure and pseudo-components. The use of Soave – Redlich – Kwon equation of state is popular in the calculations of petroleum engineering therefore many researchers used it to perform phase behavior analysis for reservoir fluids (Wang and Orr (2000), Ertekin and Obut (2003), Hasan (2004) and Haghtalab (2011))
This paper presents a new flash model for reservoir fluids in gas – oil se
This researchpaper includes the incorporation of Alliin at various energy levels and angles
With Metformin using Gaussian 09 and Gaussian view 06. Two computers were used in this work. Samples were generated to draw, integrate, simulate and measure the value of the potential energy surface by means of which the lowest energy value was (-1227.408au). The best correlation compound was achieved between Alliin and Metformin through the low energy values where the best place for metformin to b
... Show More