Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's performance was evaluated, and tests were run. Line-to-ground faults were examined. The study demonstrates how effective, rapid, and precise this method is at locating faults. The neural network's performance was examined, and tests were run on it. The overall performance of the mean square error in the trained network execution was 0.11792 at 35 epochs. The correlation coefficient at the entire target was 0.99987 percent of an error on the Doukan-Erbil double transmission lines.
This study has dealt with, the issue of classification of rural road network , in addition to prepare a suggested for the classification for this network in Iraq , this classification account , the specifications and characteristics of rural roads, population, and the range taking of settlements , then this classification was applied on the rural road network in the Najaf province there are four categories of classification ,the first is major arterial rural roads divided into two major arterial and minor arterial roads , while the second category collected roads which was divided into minor arterial roads and main collected roads. The third category was represented by Local Roads , it has been divided into paved roads and unpaved, the f
... Show MoreThis paper explores VANET topics: architecture, characteristics, security, routing protocols, applications, simulators, and 5G integration. We update, edit, and summarize some of the published data as we analyze each notion. For ease of comprehension and clarity, we give part of the data as tables and figures. This survey also raises issues for potential future research topics, such as how to integrate VANET with a 5G cellular network and how to use trust mechanisms to enhance security, scalability, effectiveness, and other VANET features and services. In short, this review may aid academics and developers in choosing the key VANET characteristics for their objectives in a single document.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
This research examines the future of television work in light of the challenges posed by artificial intelligence (AI). The study aims to explore the impact of AI on the form and content of television messages and identify areas where AI can be employed in television production. This study adopts a future-oriented exploratory approach, utilizing survey methodology. As the research focuses on foresight, the researcher gathers the opinions of AI experts and media specialists through in-depth interviews to obtain data and insights. The researcher selected 30 experts, with 15 experts in AI and 15 experts in media. The study reveals several findings, including the potential use of machine learning, deep learning, and na
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreA study of non-diatom algal species composition in twelve sites from Greater Zab River path within
Erbil Province, was carried out from April 2021 to January 2022 with monthly sample collection in twelve studied sites. Among them site 4,5,6,7 and 9 are the first for algal study in this area. The 112 different species of algae belong to 33 genera, 25 families, 13 orders and 4 divisions have been identified. The predominant genera included Spirogyra and Cosmarium 17, 8 taxa respectively. 13 taxa were new recorded to Iraqi
Kurdistan algal flora and 9 of them were new recorded to Iraqi algal flora: Botryosphaerella sudetica, Muriella magna, Gloeotaenium loitlesbergianum, Apiocystis brauniana, Anabaena oscillarioides, C. distentum
Numerous regions in the city of Baghdad experience the congestion and traffic problems. Due to the religious and economic significance, Al-Kadhimiya city (inside the metropolitan range of Baghdad) was chosen as study area. The data gathering stage was separated into two branches: the questionnaire method which is utilized to estimate the traffic volumes for the chosen roads and field data collection method which included video recording and manual counting for the volumes entering the selected signal intersections. The stage of analysis and evaluation for the seventeen urban roads, one highway, and three intersections was performed by HCS-2000 software.The presented work plots a system for assessing the level of service
... Show MoreEfficacy of Oregano Essential Oil Mouthwash in Reducing Oral Halitosis: A Randomized, Double-Blind Clinical Trial, Mohamed Saeed M Ali, Ayser Najah Mohammed*
Recently new concepts such as free data or Volunteered Geographic Information (VGI) emerged on Web 2.0 technologies. OpenStreetMap (OSM) is one of the most representative projects of this trend. Geospatial data from different source often has variable accuracy levels due to different data collection methods; therefore the most concerning problem with (OSM) is its unknown quality. This study aims to develop a specific tool which can analyze and assess the possibility matching of OSM road features with reference dataset using Matlab programming language. This tool applied on two different study areas in Iraq (Baghdad and Karbala), in order to verify if the OSM data has the same quality in both study areas. This program, in general, consists
... Show MoreThe UN plans to achieve several development objectives by 2030. These objectives address global warming, a major issue. This method aims to improve sustainable accounting performance (AP). In this circumstance, AI is being applied in various fields, notably in economic, social, and environmental (ESE) domains. This research investigates how sustainable development (SD) influences AI methodologies and AP improvement. The research examined a sample of Iraqi banks listed on the Iraq Stock Exchange from 2014 to 2022. AI was measured by ATM and POS prevalence. A three-dimensional approach examined economic, social, and environmental (ESE) sustainability. Meanwhile, the performance of sustainable accounting was measured through the return on asse
... Show More