Preferred Language
Articles
/
joe-1768
EMG-Based Control of Active Ankle-Foot Prosthesis
...Show More Authors

 Most below-knee prostheses are manufactured in Iraq without considering the fast progress in smart prostheses, which can offer movements in the desired directions according to the type of control system designed for this purpose. The proposed design appears to have the advantages of simplicity, affordability, better load distribution, suitability for subjects with transtibial amputation, and viability in countries with people having low socio-economic status. The designed prosthetics consisted of foot, ball, and socket joints, two stepper motors, a linkage system, and an EMG shield. All these materials were available in the local markets in Iraq. The experimental results showed that the maximum range of motion to move the designed prosthetic in the sagittal and frontal planes reached 70% of the healthy foot range of motion relative to the signals of the gastrocnemius muscle of a healthy leg person. The angles that represented the range of motion achieved in various directions at the ankle joint were Dorsiflexion Angle (35˚), Plantar Flexion Angle (25˚), Inversion Angle (20˚), and Eversion Angle (15˚).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Active Vibration Control of Cantilever Beam by Using Optimal LQR Controller
...Show More Authors

Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.  

In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Sep 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Design Active Filter Based on Genetic Algorithm
...Show More Authors

The  lossy-FDNR  based  aclive  fil ter has an  important   property among  many  design  realizations. 'This includes  a significant reduction in component count particularly in the number  of OP-AMP which consumes   power.  However  the·  problem  of  this   type  is the  large component spreads  which affect the fdter performance.

In  this  paper   Genetic   Algorithm   is  applied   to  minimize   the component  spread   (capacitance  and  resistance  p,read). The minimization of these spreads allow the fil

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Intelligent EMG Pattern Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects
...Show More Authors

View Publication
Scopus (124)
Crossref (121)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2013
Journal Name
2013 35th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Sep 29 2023
Journal Name
International Journal Of Applied Mechanics And Engineering
Fuzzy logic control of active suspension system equipped with a hydraulic actuator
...Show More Authors

In this paper, the Active Suspension System (ASS) of road vehicles was investigated. In addition to the conventional stiffness and damper, the proposed ASS includes a fuzzy controller, a hydraulic actuator, and an LVDT position sensor. Furthermore, this paper presents a nonlinear model describing the operation of the hydraulic actuator as a part of the suspension system. Additionally, the detailed steps of the fuzzy controller design for such a system are introduced. A MATLAB/Simulink model was constructed to study the proposed ASS at different profiles of road irregularities. The results have shown that the proposed ASS has superior performance compared to the conventional Passive Suspension System (PSS), where the body displacemen

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Crossref (1)
Clarivate Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction
...Show More Authors

Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin

... Show More
View Publication
Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Fatigue Analysis of Hip Prosthesis
...Show More Authors

The present work covers the analytical design process of three dimensional (3-D) hip joint prosthesis with numerical fatigue stress analysis. The analytical generation equations describing the different stem constructive parts (ball, neck, tour, cone, lower ball) have been presented to reform the stem model in a mathematical feature. The generated surface has been introduced to FE solver (Ansys version 11) in order to simulate the induced dynamic stresses and investigate the effect of every design parameter (ball radius, angle of neck, radius of neck, neck ratio, main tour radius, and outer tour radius) on the max. equivalent stresses for hip prosthesis made from titanium alloy. The dynamic loading case has been studied to a stumbling ca

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Enhanced Prosthesis Control Through Improved Shoulder Girdle Motion Recognition Using Time-Dependent Power Spectrum Descriptors and Long Short-Term Memory
...Show More Authors

Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Fri Mar 08 2024
Journal Name
Applied System Innovation
Adaptive Active Disturbance Rejection Control for Vehicle Steer-by-Wire under Communication Time Delays
...Show More Authors

In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance est

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref