Soil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). The soil improvement techniques were investigated by injecting a low-pressure mixture of water and ordinary Portland cement (O.P.C.) with (0.8, 1, and 1.3) W/C ratios. The study revealed the relationship between pile model samples (U.C.Ts.) and W/C ratios. It also showed that the pile model samples' (U.C.Ts.) result decreased from 14 to 12 to 10 MPa, respectively, with an increase in W/C ratios from 0.8 to 1 and 1.3, respectively. Furthermore, the stiffness characteristics of a jet grouting column were calculated based on Mohr's Circles theory, and numerous theoretical approaches obtained the consequences of tensile strength.
Background: The finite element method (FEM) is expected to be one of the most effective computational tools for measuring the stress on implant-supported restorations. This study was designed using the 3D-FEM to evaluate the effect of two adhesive luting types of cement on the occlusal stress and deformation of a hybrid crown cemented to a mono-implant. Materials and Method: The mono-screw STL file was imported into the CAD/CAM system library from a database supported by De-Tech Implant Technology. This was to assist in the accurate reproduction of details and design of a simulated implant abutment. Virtually, a digital crown was designed to be cemented on an abutment screw. A minimum occlusal thickness of 1mm and marginal fitting of 1.2
... Show MoreThis research presents the results of the tests of the physical, chemical and biological treatments performed on the industrial effluent of Al-Rashid Factory for vegetable oils during January to July, 2010. Some environmental parameters such as temperature, electrical conductivity(ec), Biological oxygen demand(bod), chemical oxygen demand(cod), total suspended solids(tss), dissolved oxygen(o2) and total dissolved solids(tdc) have been investigated. The study shows that the industrial effluent contains a percent of organic pollution and in different values, and that it is responsible for the (bod), which records (5.15-67)ppm, while the (cod) ranges between (25-170.5)ppm, the (ec) values range between (
... Show MoreThe ascorbic acid content of juices of some fruits and pharmaceutical tablets of Vitamin C was determined by a homemade apparatus of DIE technique using a thermocouple as heat sensor. The method is simple, speed, low cost and the different types of turbid, colored samples can be analyzed without any problem. The results were of a valuable accuracy and precision, and the recovery of results was with acceptable values
The article discusses the spatial analysis of the chemical soil properties that is a key component of the agriculture ecosystem based on satellite images. The main objective of the present study is to measure the chemical soil properties (total dissolved salts (TDS), Electrical conductivity (EC), PH, and) and the spatial variability. On 13 November 2020 (wet season), a total of 12 soil samples were collected in the field through random sampling in the Sanam mountain-Al Zubair region south of Basra province, to contain its soil samples components of minerals and precious elements such as silica and sulfur. From experimental results, the soil sample in the sixth position has the highest concentration of TDS values, reached (5798.4
... Show MoreMany researchers tried to prevent or reduce moisture damage and its sensitivity to temperature to improving the performance of hot mix asphalt because it is decreasing the functional and structural life of fixable pavement due to the moisture damage had exposed to it.
The main objective of this study is to inspect the effect of (fly ash “3%, 6%, 12%”, hydrated lime”5%, 10%, 20%” and silica fumes”1%, 2%, 4%) referring to previous research by the net weight asphalt cement as a modified material on the moisture and temperature sensitivity of hot mix asphalt. This was done using asphalt from AL-Nasiria refinery with penetration grade 40-50, nominal maximum size (12.5) mm (surface course) of aggregate and on
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreConventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show More