Soil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). The soil improvement techniques were investigated by injecting a low-pressure mixture of water and ordinary Portland cement (O.P.C.) with (0.8, 1, and 1.3) W/C ratios. The study revealed the relationship between pile model samples (U.C.Ts.) and W/C ratios. It also showed that the pile model samples' (U.C.Ts.) result decreased from 14 to 12 to 10 MPa, respectively, with an increase in W/C ratios from 0.8 to 1 and 1.3, respectively. Furthermore, the stiffness characteristics of a jet grouting column were calculated based on Mohr's Circles theory, and numerous theoretical approaches obtained the consequences of tensile strength.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreKE Sharquie, AA Noaimi, ZN Al-Khafaji…, Journal of Cosmetics, Dermatological Sciences and Applications, 2016 - Cited by 2
Research Summary:
Seeking happiness and searching for it have been among the priorities of mankind from the beginning of his creation and will remain so until the end of this world, and even in the next life, he seeks happiness, but the difference is that a person can work in this world to obtain it, but in the next life he is expected to get what he done in this world. And among these reasons are practical actions that a person undertakes while he intends to draw close to God Almighty, so they lead him to attain his desired perfection, and to attain his goals and objectives, which is the minimum happiness in this life, and ultimate happiness after the soul separates the body, and on the day of the judgment, Amon
... Show MoreIn this research the hard chromium electroplating process, which is one of the common methods of overlay coating was used, by using chromium acid as source of chromium and sulphuric acid as catalyst since the ratio between chromic acid and sulphuric acid is (100 : 1) consequently. Plating process was made by applying current of density (40 Amp / dm2) and the range of solution temperature was (50 – 55oC) with different time periods (1-5 hr). A low carbon steel type (Ck15) was used as substrate for hard chromium electroplating. Solid carburization was carried out for hard chromium plating specimen at temperature (925oC) with time duration (2 hr) to be followed with quenching and tempering
... Show MoreThe aim of this paper is to measure the characteristics properties of 3 m radio telescope that installed inside Baghdad University campus. The measurements of this study cover some of the fundamental parameters at 1.42 GHz. These parameters concentrated principally on, the system noise temperature, signal to noise ratio and sensitivity, half power beam width, aperture efficiency, and effective area. These parameters are estimated via different radio sources observation like Cas-A, full moon, sky background, and solar drift scan observations. From the results of these observations, these parameters are found to be approximately 64 K, 1.2, 0.9 Jansky, 3.7°, 0.54, and 3.8 m2 respectively. The parameters values have vital affect to quantitativ
... Show MoreThe performance of the pavement in terms of vehicle safety and tire wear is affected by the friction behavior of the pavement. To highlight the main characteristics that affect the production of better friction resistance of the pavement surface in this work. The micro-texture and macro-texture of the asphalt surface of Baghdad Airport highway were studied using two methods: (sand patch method and the British pendulum test). The sand patch was examined by drawing sand grains of a specific volume, while the micro-texture was analyzed using a BPT under dry and wet surface conditions. All data obtained from the two examinations were analyzed and modelled statistically using SPSS 25 software. Results show that skid resistance of pavemen
... Show More