Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhances by applying the compound technique at all the working fluid's temperatures and flow rate ranges. The maximum increase in overall heat transfer coefficient occurs at an angle of 30° and the resonance frequency. Moreover, the effectiveness of the double pipe heat exchanger gradually expanded when temperature, inclination angles, and vibration amplitude rosed. But the effectiveness value declined as the hot working flow rate increased considerably. Finally, the enhancement factor demonstrated that the combined strategy (vibration frequencies and inclination angles) had been the most effective technique in improving and enhancing heat transfer and was superior to the other ways. Additionally, the extremes improvement in overall heat transfer coefficient, effectiveness, and enhancement factor are 183.4, 191, and 164.4 %. The improvement was situated at the resonance frequency with a 30° inclination angle.
Double-layer micro-perforated panels (MPPs) have been studied extensively as sound absorption systems to increase the absorption performance of single-layer MPPs. However, existing proposed models indicate that there is still room for improvement regarding the frequency bands of absorption for the double-layer MPP. This study presents a double-layer MPP formed with two single MPPs with inhomogeneous perforation backed by multiple cavities of varying depths. The theoretical formulation is developed using the electrical equivalent circuit method to calculate the absorption coefficient under a normal incident sound. The simulation results show that the proposed model can produce absorption coefficient with wider absorption bandwidth compared w
... Show MorePortulacaria afra is a small succulent tree, previously belonging to the Portulacaceae family, but with further studies, the plant transferred to the Didieracea family. P. afra was used as an ornamental, vegetable, and ethnomedicinal plant. Uses of the plant by rural South Africans to treat chronic skin conditions and rashes, alleviate exhaustion, and aid in treating TB and diarrhea have been documented in folklore. According to pharmaceutical research, plant extracts off er a wide range of remedial outcomes, such as antidiabetic, antifungal, antibacterial, anticancer, antioxidant, and anti-infl ammatory. The study aims to determine some bioactive constituents responsible for pharmacological activities and traditional usefulness. Th
... Show MoreThe corrosion inhibiting properties of the new furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione in acidic solution (1.0 M HCl) were explored utilizing electrochemical, surface morphology (AFM), and quantum chemical calculations approaches. The novel furan derivative 5-(furan-2-ylmethylsulfonyl-4-phenyl-2,4- dihydro [1,2,4] triazole-3-thione shows with an inhibitory efficiency value of 99.4 percent at 150 ppm, carbon steel corrosion in acidic medium is effectively inhibited, according to the results. The influence of temperature on corrosion prevention was studied using adsorption parameters and activation thermodynamics. The novel furan derivative creates a protective layer over the metallic surfa
... Show MoreA field trial was conducted at Abu-Ghraib research station , Baghdad , Iraq . The objectives were to study the effect of nitrogen fertilizer and planting space on the performance of rape seed. A split-plot in a randomized complete of block design with three replications were used. Five levels of nitrogen fertilizer ( 120,160,200,240,280 Kg / ha ) were assigned to main plots, where as planting space in sub-plots. The result obtained confirmed that 280,240 kg / ha nitrogen maximized seed yield 1.830 , 1.773 ton/ha, oil yield,0.843,0.824 ton/ha .Results showed that planting space 30 cm produced the highest seed yield 1.90 ton / ha and oil yield , 0.884 ton / ha . Interactions between nitrogen fertilizer and p
... Show MoreA field trial was conducted at Abu-Ghraib research station , Baghdad , Iraq , during the autumn season of 2006. The objectives were to study the effect of nitrogen fertilizer and planting space on the performance of rape seed. A split-plot in a randomized complete of block design with three replications were used. Five levels of nitrogen fertilizer ( 120,160,200,240,280 Kg / ha ) were assigned to main plots, where as planting space in sub-plots. The result obtained confirmed that 280,240 kg / ha nitrogen maximized seed yield 1.830 , 1.773 ton/ha, oil yield,0.843,0.824 ton/ha .Results showed that planting space 30 cm produced the highest seed yield 1.90 ton / ha and oil yield , 0.884 ton / ha . Interactions be
... Show MoreAn overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .
Tendon is important structure of the human body, since it can sustain tensile loading. The primary function of this tissue is to stabilize the joints they attached to it during daily activities. As well as, tendon has viscoelastic properties that can determine their response to loading and restrict the potential of injuries. One of the major points that this paper works with is the study of the biomechanical behaviour of tendon in response to tensile loading to describe their biological behaviour. Also, conclude the mathematical expression that may illustrate the tendon behaviour. All of the experiments were made in Physiology laboratories / Medical College/ Al- Nahrain University on ten rats "Rattus Norvegicus" of [108- 360] gm weight f
... Show MoreTo investigate the antiplaque and antigingivitis efficacy in addition to evaluating side effects and subjects’ perceptions of three commercially available mouthwashes.
This study was a double‐blind, parallel, and short‐term trial. A total of 75 dental students with biofilm‐induced gingivitis were included in the final analysis of the current study. Clinical parameters (plaque index and bleeding on probing) and the staining effect were measured at baseline and after 7 days. In addition, a VAS‐based assessment questionnaire was completed by the participants.
Two‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
Abstract: Narrow laser pulses have been essential sources in optical communication system. High data rate optical communication network system demands compressed laser source with unique optical property. In this work using pulsed duration (9) ns, peak power 1.2297mW, full width half maximum (FWHM) 286 pm, and wavelength center 1546.7 nm as compression laser source. Mach Zehnder interferometer (MZI) is built by considering two ways. First, polarization maintaining fiber (PMF) with 10 cm length is used to connect between laser source and fiber brag grating analysis (FBGA). Second, Nested Mach Zehnder interferometer (NMZI) was designed by using three PMFs with 10 cm length. These three Fibers are splicing to sing
... Show More