Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhances by applying the compound technique at all the working fluid's temperatures and flow rate ranges. The maximum increase in overall heat transfer coefficient occurs at an angle of 30° and the resonance frequency. Moreover, the effectiveness of the double pipe heat exchanger gradually expanded when temperature, inclination angles, and vibration amplitude rosed. But the effectiveness value declined as the hot working flow rate increased considerably. Finally, the enhancement factor demonstrated that the combined strategy (vibration frequencies and inclination angles) had been the most effective technique in improving and enhancing heat transfer and was superior to the other ways. Additionally, the extremes improvement in overall heat transfer coefficient, effectiveness, and enhancement factor are 183.4, 191, and 164.4 %. The improvement was situated at the resonance frequency with a 30° inclination angle.
Background: The bonded orthodontic retainer constructed from multistrand wire and composite is an efficient esthetic retainer, which can be maintained long-term. Clinical failures of bonded orthodontic retainers, most commonly at the wire/composite interface, have been reported. This in vitro investigation aimed to evaluate the tensile forces of selected multistrand wires and composite materials that are available for use in the construction of bonded fixed retainers. Materials and Methods: The study sample includes 120 wires with three types of retainer wires (3 braided strands\ Orthotechnology, 8 braided strands\ G&H Orthodontics, 6 coaxial strands\ Orthoclassic wires), two types of adhesive (flowable\ Orthotechnology, non flowable\ G&H O
... Show MoreHydrate dissociation equilibrium conditions for carbon dioxide + methane with water, nitrogen + methane with water and carbon dioxide + nitrogen with water were measured using cryogenic sapphire cell. Measurements were performed in the temperature range of 275.75 K–293.95 K and for pressures ranging from 5 MPa to 25 MPa. The resulting data indicate that as the carbon dioxide concentration is increased in the gas mixture, the gas hydrate equilibrium temperature increases. In contrast, by increasing the nitrogen concentration in the gas mixtures containing methane or carbon dioxide decreased the gas hydrate equilibrium temperatures. Furthermore, the cage occupancies for the carbon dioxide + methane system were evaluated using the Van der Wa
... Show MoreThis study investigates the potential of biogas recovery from used engine oil (UEO) by co-digestion with animals’ manure, including cow dung (CD), poultry manure (PM), and cattle manure (CM). The experimental work was carried out in anaerobic biodigesters at mesophilic conditions (37°C). Two groups of biodigesters were prepared. Each group consisted of 4 digesters. UEO was the main component in the first group of biodigesters with and without inoculum, whereby a mix of UEO and petroleum refinery oily sludge (ROS) was the component in the second group of biodigesters. The results revealed that for UEO-based biodigesters, maximum biogas production was 0.98, 1.23, 1.93, and 0 ml/g VS from UEO±CD, UEO±CM, UEO±PM, and U
... Show MoreAdvancements in horizontal drilling technologies are utilized to develop unconventional resources, where reservoir temperatures and pressures are very high. However, the flocculation of bentonite in traditional fluids at high temperature and high pressure (HTHP) environments can lower cuttings transportation efficiency and even result in problems such as stuck pipe, decreased rate of penetration (ROP), accelerated bit wear, high torque, and drag on the drill string, and formation damage. The major purpose of the present research is to investigate the performance of low bentonite content water-based fluids for the hole cleaning operation in horizontal drilling processes. Low bentonite content water-based drilling fluids were formulated by re
... Show MoreThe current research illustrates experimentally the effect of series and parallel connection (Z-I Configurations) of flat plate water solar collectors array on the thermal performance of closed loop solar heating system. The study includes the effect of changing the water flow rate on the thermal efficiency. The results show that, the collector's efficiency in series connection is higher than the parallel connection within flow rate level less than (100) ℓ/hr. Moreover, the collector efficiency in parallel connection of (I-Configurations) is more than the (Z- Configurations) with increasing the water flow rate .The maximum daily efficiency for parallel (I-Configurations) and (Z- Configurations) are (55%) and (51%) at w
... Show MoreA new class of higher derivatives for harmonic univalent functions defined by a generalized fractional integral operator inside an open unit disk E is the aim of this paper.