Numerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhances by applying the compound technique at all the working fluid's temperatures and flow rate ranges. The maximum increase in overall heat transfer coefficient occurs at an angle of 30° and the resonance frequency. Moreover, the effectiveness of the double pipe heat exchanger gradually expanded when temperature, inclination angles, and vibration amplitude rosed. But the effectiveness value declined as the hot working flow rate increased considerably. Finally, the enhancement factor demonstrated that the combined strategy (vibration frequencies and inclination angles) had been the most effective technique in improving and enhancing heat transfer and was superior to the other ways. Additionally, the extremes improvement in overall heat transfer coefficient, effectiveness, and enhancement factor are 183.4, 191, and 164.4 %. The improvement was situated at the resonance frequency with a 30° inclination angle.
Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in r
... Show MoreSimulation of direct current (DC) discharge plasma using
COMSOL Multiphysics software were used to study the uniformity
of deposition on anode from DC discharge sputtering using ring and
disc cathodes, then applied it experimentally to make comparison
between film thickness distribution with simulation results. Both
simulation and experimental results shows that the deposition using
copper ring cathode is more uniformity than disc cathode
This paper describes theoretical modeling of electrostatic mirror based on two cylindrical electrodes, A computational investigation has been carried out on the design and properties of the electrostatic mirror. we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The beam path by using the Bimurzaev technique have been investigated as a mirror trajectory with the aid of Runge – Kutta method. the electrode shape of mirror two electrode has been determined by using package SIMION computer program . The spherical and chromatic aberrations coefficients of mirror has been computed and normalized in terms of the focal length. The choice of the mirror depends on the op
... Show MoreThe tasseled cap transformation (TCT) is a useful tool for compressing spectral data into a few bands associated with physical scene characteristics with minimal information loss. TCT was originally evolved from the Landsat multi-spectral scanner (MSS) launched in 1972 and is widely adapted to modern sensors. In this study, we derived the TCT coefficients for operational land imager (OLI) sensor on-board Landsat-8 acquired at 28 Sep.2013. A newly classification method is presented; the method is based on dividing the scatterplot between the Greenness and the Brightness of TCT into regions corresponding to their reflectance values. The results from this paper suggest that the TCT coefficient derived from the OLI bands at September is the
... Show MoreImage steganography is undoubtedly significant in the field of secure multimedia communication. The undetectability and high payload capacity are two of the important characteristics of any form of steganography. In this paper, the level of image security is improved by combining the steganography and cryptography techniques in order to produce the secured image. The proposed method depends on using LSBs as an indicator for hiding encrypted bits in dual tree complex wavelet coefficient DT-CWT. The cover image is divided into non overlapping blocks of size (3*3). After that, a Key is produced by extracting the center pixel (pc) from each block to encrypt each character in the secret text. The cover image is converted using DT-CWT, then the p
... Show MoreA new de-blurring technique was proposed in order to reduced or remove the blur in the images. The proposed filter was designed from the Lagrange interpolation calculation with adjusted by fuzzy rules and supported by wavelet decomposing technique. The proposed Wavelet Lagrange Fuzzy filter gives good results for fully and partially blurring region in images.
The objective of this work is to investigate the performance of a conventional three phase induction motor supplied by unbalanced voltages. An effort to study the motor steady state performance under this disturbance is introduced. Using per phase equivalent circuit analysis with the concept of symmetrical components approach, the steady state performance is theoretically calculated. Also, a model for the induction motor with the MATLAB/Simulink SPS tools has been implemented and steady state results were obtained. Both results are compared and show good correlation as well. The simulation model is introduced to support and enhance electrical engineers with a complete understanding for the steady state performance of a fully loaded induc
... Show More