Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loading and unloading paths experienced from the tensile test. Considering the effect of different parameters on the damping properties, such as heat treatment temperatures, cooling rates, and carbon content, the results show that the damping properties in the annealing process at different temperatures have interesting damping properties, among other processes. Also, the highest damping energy for the annealing cooling scheme was attained at a heating temperature of 1050 ˚C, irrespective of the carbon content. Finally, better damping properties for the medium carbon content of (0.299%C) is achieved for all types of heat treatment process compared with a low carbon content of (0.188% C); and, in general, with increasing carbon content from medium to low, steel response to heat treatment increases and better damping properties are obtained.
Structural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v
In this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
Numerous drilling additives and materials are used continuously because they are necessary to support and give the required properties of the drilling fluid so that to ensure the stability of the borehole. This paper aspires to evaluate the rheological properties of bentonite (montmorillonite) Trefawey as an alternative to using commercial bentonite. Monitoring and evaluating of the rheological and filtration properties were prepared. This exertion aims to focus on the effect of hematite, and barite on the rheological properties of the three aforementioned bentonite types. An improvement in the rheological properties of bentonite (montmorillonite). Trefawey was observed after adding the previous heavy materials. Hematite has by some
... Show MoreThe present paper deals with studying the effect of electrical discharge machining (EDM) and shot blast peening parameters on work piece fatigue lives using copper and graphite electrodes. Response surface methodology (RSM) and the design of experiment (DOE) were used to plan and design the experimental work matrices for two EDM groups of experiments using kerosene dielectric alone, while the second was treated by the shot blast peening processes after EDM machining. To verify the experimental results, the analysis of variance (ANOVA) was used to predict the EDM models for high carbon high chromium AISI D2 die steel. The work piece fatigue lives in terms of safety factors after EDM models were developed by FEM using ANSY
... Show MoreThe research’s main goal is to investigate the effects of using magnetic water in concrete mixes with regard to various mechanical properties such as compressive, flexural, and splitting tensile strength. The concrete mix investigated was designed to attain a specified cylinder compressive strength (30 MPa), with mix proportions of 1:1.8:2.68 cement to sand to crushed aggregate. The cement content was about 380 kg/m3, with a w/c ratio equal to 0.54, sand content of about 685 kg/m3, and gravel content of about 1,020 kg/m3. Magnetic water was prepared via passing ordinary water throughout a magnetic field with a magnetic intensity of 9,000 Gauss. The strength test
Porcelain is one of the most important ceramic materials with a wide range of traditional and technical applications. Since most mixtures of porcelain have a high sintering temperature, bentonite has been added in this research to improve the characteristics of sintering and burning. The porcelain mixture consisted of the following Iraqi raw materials: 30% wt kaolin, 30 wt% non-plastic clay (grog), 10% wt sodium feldspar, 10 wt% potassium feldspar and 20 wt% flint. After the mechanical mixing process and transfer the powder mixture to the slurry by adding distilled water, then different weight percentage of the sodium bentonite(0, 2.5, 5, 7.5 and 10) wt% was added. The specimens were prepared by using the solid casting m
... Show MoreThis research deals with study of the effect of additives on rheological properties (yield point, plastic viscosity ,and apparent viscosity) of emulsions. Twenty seven emulsion samples were prepared; all emulsions in this investigation are invert emulsions when water droplets are dispersed in diesel oil. The resulting emulsions are called water-in-oil (W/O) emulsions. The rheological properties of these emulsions were investigated using a couett coaxial cylinder rotational viscometer (Fann-VG model 35 A), by measuring shear stress versus shear rate. It was found that the effect of additives on rheological properties of emulsions as follow: the increase in the concentration of asphaltic material tends to increase the rheological propertie
... Show MoreAlginate from Large brown seaweeds act as natural polymer has been investigated as polymer and has been added to concrete in different percentages ( 0% , 0.5% , 1% and 1.5% ) by the cement weight and the study show the effect of using alginate biopolymer admixtures on some of the fresh properties of the concrete (slump & the density fresh) also in the hardened state ( Compressive strength , Splitting tensile strength and Flexural strength ) at 28 days. The mix proportion was (1:2.26:2.26) (cement: sand: gravel) respectively and at constant w/c equal to 0.47. The results indicate that the use of alginate as a percent of the cement weight possess a positive effect on fresh properties of co
... Show MoreThis work includes preparation of Az, Qz, and Tz derivatives from the reaction of Schiff base (Sb) derivative with anthranilic acid, chloroacetyl chloride, and sodium azide, as well as, the characterization via FT-IR, 1H-NMR, and 13CNMR. The anticorrosion inhibition of these compounds was studied and the measurements of carbon steel (CS) corrosion in sodium chloride solution 3.5% (blank) and inhibitor in solutions were calculated at a temperature range of 293-323 K by the technique of electrochemical polarization. In addition, some thermodynamic and kinetic activation parameters for inhibitor and blank solutions (Ea⋇, ΔH⋇, ΔS⋇, and ΔG⋇) were determined. The results showed high inhibition efficacy for all the prepared compounds,
... Show More