Low- and medium-carbon structural steel components face random vibration and dynamic loads (like earthquakes) in many applications. Thus a modification to improve their mechanical properties, essentially damping properties, is required. The present study focuses on improving and developing these properties, significantly dampening properties, without losing the other mechanical properties. The specimens used in the present study are structural steel ribbed bar ISO 6935 subjected to heating temperatures of (850, 950, and 1050) ˚C, and cooling schemes of annealing, normalizing, sand, and quenching was selected. The damping properties of the specimens were measured experimentally with the area under the curve for the loading and unloading paths experienced from the tensile test. Considering the effect of different parameters on the damping properties, such as heat treatment temperatures, cooling rates, and carbon content, the results show that the damping properties in the annealing process at different temperatures have interesting damping properties, among other processes. Also, the highest damping energy for the annealing cooling scheme was attained at a heating temperature of 1050 ˚C, irrespective of the carbon content. Finally, better damping properties for the medium carbon content of (0.299%C) is achieved for all types of heat treatment process compared with a low carbon content of (0.188% C); and, in general, with increasing carbon content from medium to low, steel response to heat treatment increases and better damping properties are obtained.
This research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior was
... Show MoreBurnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue
... Show MoreBackground: Poly (methyl methacrylate) has several disadvantages (poor mechanical properties) like impact and transverse strength. In order to overcome these disadvantages, several methods were used to strengthen the acrylic resin by using different fibers or fillers. This study was conducted to evaluate the effect of Plasma treatment of the fiber on mechanical properties Poly (methyl methacrylate) denture base material. Materials and methods: Specimens were prepared from poly methyl metha acrylic (PMMA) divided according to present of fiber into 4 groups (first group without fiber as control group, second group with Plasma treated polyester fibers, third group with Plasma treated polyamide fibers and fourth group Plasma treated combination
... Show MoreIn this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al thin films with different doping ratios ( 1, 2, 3 ) % , which were prepared by thermal evaporation technique under vacuum , with thickness ( 450 ± 20 ) nm deposited on glass substrates at room temperature ( 300 ) K , Structural measurements by ( XRD) techniques demonstrated that all samples prepared have polycrystalline structure with tetragonal structure and a preferred orientation [ 201 ] the &n
... Show MoreBackground: The incorporation of rubber has not been entirely successful because it can have detrimental effects on the transverse Strength and hence the rigidity of the denture base. Materials and methods: Zirconium oxide nanoparticales were coated with a layer of trimethoxysilylpropylmethacrylate (TMSPM) before sonication in monomer (MMA) with the percentages 3% by weight then mixed with powder using conventional procedure.(100) samples were prepared and divided into five groups according to the test performed ,Each group consisted of 20 specimens and these were subdivided into 2 groupsGroup (A): control group (10 specimens of high impact acrylic resin without zirconium oxide) and Group (B):zirconium oxide group(10 specimens of high impac
... Show MoreOverlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
the study aimed to identify the impact of the types of cooking utensils in transition metal elements to food and the effect of acid and storage in the concentration of these elements. used five types of cooking utensils including aluminum. tefal, astainls steel, glass. (pyrex), and ceramic prepared in it the food meal. the same meals were repeated add to them acid. the estimate of mineral elements in the meal prepared before storage and after storage in refrigerator temperature degree. the result shows the increase of aluminum concentration in the meals that prepared in aluminum pot reaching 2.913 pmm while reached less concentration in the meal prepared in astainls pot reaching 0.325 pmm. the highest concentration of iron reached 25.2 p
... Show More