A large amount of thermal energy is generated from burning hazardous chemical wastes, and the temperature of the flue gases in hazardous waste incinerators reaches up to (1200 °C). The flue gases are cooled to (40°C) and are treated before emission. This thermal energy can be utilized to produce electrical power by designing a system suitable for dangerous flue gases in the future depending on the results of much research about using a proto-type small steam power plant that uses safe fuel to study and develop the electricity generation process with water tube boiler which is manufactured experimentally with theoretical development for some of its parts which are inefficient in experimental work. The studied system generates theoretically (120 kg steam /h at 8 bars) with dry wood as fuel and preheating for the air of combustion and feed water and a diesel engine of (8 hp) four-stroke with single piston converted to steam engine coupled with the electrical generator of (3 kVA). The results are compared with practical values valid in the literature about small power plants of steam capacity (0.1-1) ton/h and operating pressure up to 10 bars. Experimentally, the generated electrical power is little and sufficient to operate a small fan and lump. The current converted steam engine is better than a conventional steam engine in auto lubrication with some operational problems. The boiler efficiency is 63.28%.
Rotating blades are the important parts in gas turbines. Hence, an accurate mathematical estimation (F.E.M) of the stresses and deformations characteristics was required in the design applications to avoid failure. In recent year’s there are researchers interest in the effect of temperature on solid bodies has greatly increased, The main of this study investigated the thermal and rotational effects. So, the thermal stresses due to high pressure and temperature are studies, also determine the steady state stresses and deformations of rotating blades due to mechanical effect. Many parameters such as thickness and centre of rotating are investigated in this paper. The
... Show MoreA numerical investigation is adopted for two dimensional thermal analysis of rocket thrust chamber wall (RL10), employing finite difference model with iterative scheme (implemented under relaxation factor of 0.9 for convergence) to compute temperature distribution within thrust chamber wall (which is composed of Nickel and Copper layers). The analysis is conducted for different boundary conditions: only convection boundary conditions then combined radiation, convection boundary conditions also for different aspect ratio (AR) of cooling channel. The results show that Utilizing cooling channels of high aspect ratio leads to decrease in temperature variation across thrust chamber wall, while no effects on heat transferred to the
... Show MoreThe effect of refrigerant injection techniques on the performance of heat pump system based on exergy analysis was studied theoretically. Three refrigerant injection techniques were used; the first was achieved by injected vapour in volume ratios from 1 to 7% in the accumulator. The second was injection liquid refrigerant in the discharge line with the aid of Liquid Pressure Amplification (LPA) pump, with volume ratios from 1 to 10%. The third was a hybrid injection with volume ratios of injected vapour and liquid varied from 1 to 3% and 1 to 10%; respectively. The following improvements in cycle performance were observed. For vapour injection technique, the best ratio of injection was 5%, the exergy destruction reduced
... Show MoreRenewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The te
... Show MoreThis study investigates the constructs and related theories that drive social capital in energy sector from the intention perspectives. This research uses theories of 'social support' and 'planned behaviour' alongside satisfaction and perceived value to propose a research model that drives social capital for energy sectors in Malaysia. The model reveals that the Theories of Planned Behaviour (TPB) and Social Support Theory (SST) alongside satisfaction and perceived value factors promote social capital development in energy sectors. Using PLS-SEM to analyse data gathered from energy sector employees in Malaysia, this research demonstrates that social capital is present when there is trust and loyalty among the users and positively effects en
... Show MoreThis research contributes to environmental sustainability by recycling natural waste resources in making clothing products. The research aims to employ palm trees waste in designing belts suitable for contemporary women's fashion trends. Both descriptive and applied research approaches were used. Therefore, a collection of belts was designed and implemented. Then, a questionnaire was used to assess the extent to which the implemented belts achieved in sustainability standards using Likert scale. The sample size was 60 women. The data were analyzed using the SPSS program to calculate the arithmetic mean and standard deviation. One of the significant results of the research is the high average scores of the criteria for achieving sustainab
... Show MoreStabilization of phenol trapped by agricultural waste: a study of the influence of ambient temperature on the adsorbed phenol