Biometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses. The proposed method uses local feature of fingerprint represented by minutiae positions to overcome the problem of repeated key to perform encryption and decryption of a text message, where, the message will be ciphered by a modified Vigenère method. Unlike the old usual method, the key constructed from fingerprint minutiae depend on instantaneous date and time of ciphertext generation. The Vigenère table consist of 95 elements: case sensitive letters, numbers, symbols and punctuation. The simulation results (with MATLAB 2021b) show that the original message cannot be reconstructed without the presence of the key which is a function of the date and time of generation. Where 720 different keys can be generated per day which mean 1440 distinct ciphertexts can be obtained for the same message daily.
The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreIn this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperatur
Background: Knowledge about the prevalence and distribution of pathologies in a particular location is important when a differential diagnosis is being formulated. The aim of this study was to describe the prevalence and the clinicopathological features of odontogenic cysts and tumors affecting the maxilla and to discuss the unusual presentation of those lesions within maxillary sinus.
Materials and Methods: A multicenter retrospective analysis was performed on pathology archives of patients who were diagnosed with maxillary odontogenic cysts and tumors from 2010 to 2020. Data were collected with respect to age, gender and location.
Result: A total of 384 cases was identified, 320 (83.3%) cases were diagnosed as odontogenic
... Show MoreDBN Rashid, Talent Development & Excellence, 2020
