Preferred Language
Articles
/
joe-1713
Influence of Design Efficiency of Water Supply Network Inside Building on its Optimum Usage: Review
...Show More Authors

The water supply network inside the building is of high importance due to direct contact with the user that must be optimally designed to meet the water needs of users.  This work aims to review previous research and scientific theories that deal with the design of water networks inside buildings, from calculating the amount of consumption and the optimal distribution of the network, as well as ways to rationalize the use of water by the consumer.  The process of pumping domestic water starts from water treatment plants to be fed to the public distribution networks, then reaching a distribution network inside the building till it is  provided to the user.  The design of the water supply network inside the building is mainly affected by the amount of water consumed in the building. On this basis, the pipes' dimensions and the water tank's volume are determined. The operating pressure of the water supply network inside the building is calculated to overcome the height difference and the friction inside the pipes and provide sufficient pressure to operate the most remote fixture.  The most important results of the research are that the optimal use of the water distribution network inside the buildings is achieved by the correct design and implementation using skilled labor, materials, and devices of high quality and rationalization of water consumption by the user.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
Assessment of Climate Change Impact on Water Productivity and Yield of Wheat Cultivated Using Developed Seasonal Schedule Irrigation in the Nineveh Province
...Show More Authors

The agricultural lands that depend on supplementary irrigation methods for winter wheat cultivating in wide areas of the Nineveh province are most vulnerable to climate change concerns. Due to frequent rainfall shortages and the temperature increase recently noticed and predicted by the climate scenarios. Hence important to assess the climate effect on the crop response in terms of water consumption during the periods (2021-2040) and (2041-2060) by using high-resolution data extracted from 6 global climate data GCMs under SSP5-8.5 fossil fuel emission scenarios in changing and fixed CO2 concentration. And validate the Aqua-Crop model to estimate the yield and water productivity. And gives the RRSME of 7.1- 4.1

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Management Science Letters
Work-life balance and its impact on employee satisfaction on five star hotels
...Show More Authors

This study aimed to find out the impact of work-life balance on employee satisfaction in five-star hotels in Amman, Jordan based on a descriptive analytical approach. The questionnaire of the survey was designed and distributed to a sample of participants in order to collect the necessary data for this study and they were analyzed later through the SPSS V22 program. The study population was the hotel sector in Jordan, while the study sample included the five-star hotels in the capital, Amman, and the sampling unit included the employees of the middle and lower levels of management in the five-star hotels in Amman. The study showed a number of results, including the existence of a good level of work-life balance by employees in top manage-me

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Thu May 05 2016
Journal Name
Global Journal Of Engineering Science And Researches
EVALUATE THE RATE OF CONTAMINATION SOILS BY COPPER USING NEURAL NETWORK TECHNIQUE
...Show More Authors

The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Proceedings Of The 31th Minisymposium
Towards the Requirement-Driven Generation and Evaluation of Hyperledger Fabric Network Designs
...Show More Authors

View Publication
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Nov 03 2023
Journal Name
Lecture Notes In Electrical Engineering
Towards Space Sensor Network and Internet of Things: Merging CubeSats with IoT
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
...Show More Authors

View Publication
Scopus (25)
Crossref (21)
Scopus Clarivate Crossref