This work studies the impact of input machining parameters of Electrical Discharge Machining (EDM) on the machining process performance. Tool steel O1 was selected as the workpiece material, copper as the electrode material, and kerosene as the dielectric medium. Experimental runs have been carried out with a Design of Experiment (DOE) technique. Twenty tests are accomplished with the current range of (18 to 24 Ampere), a pulse duration range of (150 to 200 µs), and a pulse-off time range of (25 to 75 µs). Based upon the experimental study's output results, the EDM parameter's effect (voltage of power supply, discharge current, pulse duration, and pulse pause interval) on the responses of the process represented by surface roughness value Ra and Metal Removal MR rate. The results obtained by the DOE approach are analyzed by STATISTICA software. It has been concluded that an increase in the current and pulse duration maximizes both metal removal rate and surface roughness. At the same time, they are minimized by maximizing the pulse pause interval.
This research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior
... Show MoreThis research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using thr
... Show MoreEfficacy of Several Forms of Storage Medium on Avulsed Teeth's Enamel Surface Roughness (An in Vitro Study), Rawaa Sadiq Obeid1*, Muna Saleem Khalaf2
Background:The demand for esthetic orthodontic appliances is increasing so that the esthetic orthodontic archwires were introduced. This in vitro study was designed to evaluate the surface roughness offiber-reinforced polymer composite (FRPC) archwires compared to coated nickel-titanium (NiTi) archwires immersed in artificial saliva. Materials and Methods:Three types of esthetic orthodontic archwires were used: FRPC (Dentaurum), Teflon coated NiTi (Dentaurum) and epoxy coated NiTi (Orthotechnology). They were round (0.018 inch) in cross section and cut into pieces of 15 mm in length.Forty pieces from each type were divided into four groups; one group was left at a dry condition and the other three groups were immersed in artificial saliva (
... Show MoreBackground: Alterations in the microhardness and roughness are commonly used to analyze the possible negative effects of bleaching products on restorative materials. This in vitro study evaluated the effect of in-office bleaching (SDI pola office +) on the surface roughness and micro-hardness of four newly developed composite materials (Z350XT –nano-filled, Z250XT-nano-hybrid, Z250-mico-hybrid and Silorane-silorane based). Materials and methods: Eighty circular samples with A3 shading were prepared by using Teflon mold 2mm thickness and 10mm in diameter. 20 samples for each material, 10 samples for base line measurement (surface roughness by using portable profillometer, and micro-hardness by usingDigital Micro Vickers Hardness Test
... Show MoreIntroduction: This study was designed to examine the effects of addition of the combination of polymerized polymethyl methacrylate (PMMA) and zirconia (ZrO2) particles to heat cure PMMA resin on impact strength, surface hardness, and roughness. Methods: The 70% (w/w) of polymerized PMMA powder (particle size: 0.70mm) was mixed with 30% (w/w) of zirconia powder (ZrO2) (1mm) to produce PMMA-ZrO2 filler. Ninety acrylic specimens created were divided into three groups containing 0% wt (Control group), 2% wt, and 4% wt, PMMA-ZrO2 filler. Ten specimens were used for impact strength, surface hardness and roughness test, blindly. Data were analyzed via oneway ANOVA and the Tukey post hoc test using R 3.6.3. Results: There was statistically signific
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreThe present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members