Moisture damage is one of the most significant troubles that destroy asphaltic pavement and reduces road serviceability. Recently, academics have noticed a trend to utilize fibers to enhance the efficiency of asphalt pavement. This research explores the effect of low-cost ceramic fiber, which has high tensile strength and a very high thermal insulation coefficient, on the asphalt mixture's characteristics by adding three different proportions (0.75%, 1.5%, and 2.25%). The Marshall test and the Tensile Strength Ratio Test (TSR) were utilized to describe the impact of ceramic fiber on the characteristics of Marshall and the moisture susceptibility of the hot mix asphalt mixture. The Field Emission Scanning Electron Microscopy (FE-SEM) analysis was used to investigate ceramic fibers' microscopic structure and clarify the mechanics of their improved behavior and their distribution within the asphalt concrete mixture. The results showed that the incorporation of ceramic fibers improved the Marshall properties and the asphalt mixture's susceptibility to moisture damage with an optimum fiber content equal to 1.5%, where Marshall stability increased by 39.04%, and the TSR increased by 11.06% at this content compared with the control asphalt mixture.
Objectives: The study aims to investigate the efficiency of physiotherapy methods to improve the
degree of the clinical recovery of the peripheral facial palsy.
Methodology: This study is carried out at the Rehabilitation Center-Baghdad from November 2009 till
March 2010. This study includes (40) patient, their ages are from (13) to (55) years old; (24) male and
(16) female with unilateral facial palsy of undetermined cause. House-Brackmann facial recovery
scores have been used before and after the physiotherapy treatment.
Results: The results show that the physiotherapy sessions obtained the best effect of the electrical
stimulation, exercises and massage in the treatment of facial palsy. Highly respondents in femal
Morphologies of ceramic hollow fiber membranes prepared by a combined phase-inversion and sintering method were studied. The organic binder spinning solution containing suspended Al₂O₃ powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures( 300 ˚C, 1400 ˚C, 25 ˚C) in order to obtain the Al₂O₃ hollow fiber membranes. The spinning solution consisted of polyether sulfone (PES), N-methyl-2-pyrrolidone (NMP), which were used as polymer binder, solvent, respectively. The prepared Al₂O₃ hollow fiber membranes were characterized by a scanning electron microscope (SEM). It is believed that finger-like void formation in asymmetric ceramic membranes is initiated by hydrodynamically unstable vis
... Show MoreIn this research, optical communication coding systems are designed and constructed by utilizing Frequency Shift Code (FSC) technique. Calculations of the system quality represented by signal to noise ratio (S/N), Bit Error Rate (BER),and Power budget are done. In FSC system, the data of Nonreturn- to–zero (NRZ ) with bit rate at 190 kb/s was entered into FSC encoder circuit in transmitter unit. This data modulates the laser source HFCT-5205 with wavelength at 1310 nm by Intensity Modulation (IM) method, then this data is transferred through Single Mode (SM) optical fiber. The recovery of the NRZ is achieved using decoder circuit in receiver unit. The calculations of BER and S/N for FSC system a
... Show MoreIn the present work, the focusing was on the study of the x-ray diffraction, dielectric constant, loses dielectric coefficient, tangent angle, alter- natively conductivity and morphology of PET/BaTio3. The PET/BaTio3 composite was prepared for polyethylene terephthalate PET polymer composite containing 0, 10, 20, 30, 40, 50, and 60 wt. % from Barium titanate BaTi03 powder. The composite of two materials leads to form mixing solution and hot-pressing method. The effect of BaTio3 on the structure and dielectric properties with morphology was studied on PET matrix polymer using XRD, LCR meter and SEM.
A simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show MoreThe research work covers a study of the possibility of producing porous ceramic bodies
as a thermal insulators by adding fired Dechla kaolinite (grog)to the same non burned
kaolinite.
Different weight percentage ranged between (0,15,25,35and40)from grog and sawdust
passed through mesh 50 to Deuchla-clay kaolinit.Cylindrical shape samples (30mm diameter
and 30mm height) were prepared by the semi-dry methed,moulding pressure was 50 N/mm
2
.
After drying at 110
o
c,the samples were burnet in the furnace at temperatures
900,950,1000,1050,and 1100
o
c. The sawdust burnt out and leaves air spaces which contribute
to the high thermal insulation value.
The fired samples were investigated to de
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show MoreAbstract
This research aims to study and improve the passivating specifications of rubber resistant to vibration. In this paper, seven different rubber recipes were prepared based on mixtures of natural rubber(NR) as an essential part in addition to the synthetic rubber (IIR, BRcis, SBR, CR)with different rates. Mechanical tests such as tensile strength, hardness, friction, resistance to compression, fatigue and creep testing in addition to the rheological test were performed. Furthermore, scanning electron microscopy (SEM)test was used to examine the structure morphology of rubber. After studying and analyzing the results, we found that, recipe containing (BRcis) of 40% from th
... Show More