One-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to (ACI 327-15) with the specified cylinder compressive strength (28 MPa). The results showed a decrease in mechanical properties with an increase in partial replacement compared to the reference mixture and an increase in water absorption and porosity at 28 days. This is because old cement mortar on the surfaces of fine recycled concrete aggregates leads to higher porosity and water absorption than fine natural aggregates. At 90 days, results improved slightly. This is due to the non-aqueous cement in the recycled fine concrete aggregate.
In order to promote sustainable steel-concrete composite structures, special shear connectors that can facilitate deconstruction are needed. A lockbolt demountable shear connector (LB-DSC), including a grout-filled steel tube embedded in the concrete slab and fastened to a geometrically compatible partial-thread bolt, which is bolted on the steel section's top flange of a composite beam, was proposed. The main drawback of previous similar demountable bolts is the sudden slip of the bolt inside its hole. This bolt has a locked conical seat lug that is secured inside a predrilled compatible counter-sunk hole in the steel section's flange to provide a non-slip bolt-flange connection. Deconstruction is achieved by demounting the tube from the t
... Show MoreGlobal warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was
... Show MoreThe accumulation of construction and demolition waste is one of the major problems in modern construction. Hence, this research investigates the use of waste brick in concrete. Seven different concrete mixes were investigated in this study: a control concrete mix, three mixes with volumetric replacement (10, 20, and 30)% of natural aggregate with brick aggregate, and two mixes with the addition of nano brick powder at a percentage level of 5– 10% by weight of cementitious materials. And the last one was mixed with 10% nano brick and 10% coarse brick aggregate. The experimental results for the additive of nano brick powder showed an enhancement in mechanical properties (compressive,
Through an experimental program of eighteen specimens presented in this paper, the bond strength between reinforcing bar and rubberized concrete was produced by adding waste tire rubber instead of natural aggregate. The fine and coarse aggregate was replaced in 0%, 25%, and 50% with the small pieces of a waste tire. Natural aggregate replacement ratio, rebar size, embedded rebar length, the rebar yield stress of rebar, cover, and concrete compressive strength were studied in this investigation. Ultimate bond stress, bond stress-slip response, and failure modes were presented. The experimental results reported that a reduction of 19% in bond strength was noticed in 50% replaced rubberized concrete compared with convention
... Show MoreThis investigation presents an experimental and analytical study on the behavior of reinforced concrete deep beams before and after repair. The original beams were first loaded under two points load up to failure, then, repaired by epoxy resin and tested again. Three of the test beams contains shear reinforcement and the other two beams have no shear reinforcement. The main variable in these beams was the percentage of longitudinal steel reinforcement (0, 0.707, 1.061, and 1.414%). The main objective of this research is to investigate the possibility of restoring the full load carrying capacity of the reinforced concrete deep beam with and without shear reinforcement by using epoxy resin as the material of repair. All be
... Show More
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show MoreThe influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa). To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was use
... Show More