The waste material problem in today's world has become a major topic affecting all sectors of human life. Researchers are interested in providing solutions for each kind of waste material. Waste glass is one of the waste materials whose amounts increase daily. This article deals with two types of modified cement mortar with glass granular in the masonry wall to find their effect on the wall's property (direct tensile, flexural, and compressive bond strength). Seven different mixes were prepared according to the used glass granular ratio (three mixes contained white glass with 15, 20, and 25% while three of them contained green glass granular 5, 10, and 15%, and the last mix was a controlled mix which contains no glass granular).Based on the obtained result, the used white glass granular provides optimum compression and direct tensile bond strength when 20% of sand is replaced with white glass granular; optimum direct tensile bond value was obtained, which increased by 1.4% and increased compressive strength by 13.08% compared to control mortar. Green glass granular provides optimum compression and direct tensile bond strength when 10% of sand is replaced, direct tensile strength by 1.02%, and increased compressive strength by 3.7% compared to control mortar. The increase of the used waste glass granular in the mortar decreases flexural bond strength, and the amount of decrease depends on the chemical glass compositions.
Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.
The aim of this research is to study experime
... Show MoreStrengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha
... Show MoreThis paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat
... Show MoreDue to the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, a lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics.
A kind of cetane number improver has been proposed and tested to be used with diesel fuel as ameans of reducing exhaust emissions. The addition of (2-ethylhexyl nitrate) was designed to raise fuel cetane number to three stages, 50, 52 and 55 compared to the used conventional diesel fuel whose CN was 48.5. The addition of CN improver results in the decre
... Show MoreBackground: Heat-cured poly (methyl methacrylate) the principal material for the fabrication of denture base have a relatively poor mechanical properties. The aim of this study was to investigate the effect of glass flakes used as reinforcement on the surface hardness and surface roughness of the heat-processed acrylic resin material. Material and method: Glass flakes (product code: GF002) pretreated with silane coupling agent were added to Triplex® denture base powder using different concentrations. A total of 100 specimens of similar dimensions (65 x 10 x 2.5) mm were prepared, subdivided into 2 main groups of 50 specimens for each of the study tests. Ten specimens for the control group and 40 specimens for each of the experimental gro
... Show MoreRock engineers widely use the uniaxial compressive strength (UCS) of rocks in designing
surface and underground structures. The procedure for measuring this rock strength has been
standardized by both the International Society for Rock Mechanics (ISRM) and American Society
for Testing and Materials (ASTM), Akram and Bakar(2007).
In this paper, an experimental study was performed to correlate of Point Load Index ( Is(50))
and Pulse Wave Velocity (Vp) to the Unconfined Compressive Strength (UCS) of Rocks. The effect
of several parameters was studied. Point load test, Unconfined Compressive Strength (UCS) and
Pulse Wave Velocity (Vp) were used for testing several rock samples with different diameters.
The predicted e
In the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show More