Preferred Language
Articles
/
joe-1666
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade the detection rates of current NIDSs, thorough analyses are essential to identify where ML predictors outperform them. The first step is to provide assessment of most used NIDS worldwide, Snort, and comparing its performance with ML classifiers. This paper provides an empirical study to evaluate performance of Snort and four supervised ML classifiers, KNN, Decision Tree, Bayesian net and Naïve Bays against network attacks, probing, Brute force and DoS. By measuring Snort metric, True Alarm Rate, F-measure, Precision and Accuracy and compares them with the same metrics conducted from applying ML algorithms using Weka tool. ML classifiers show an elevated performance with over 99% correctly classified instances for most algorithms, While Snort intrusion detection system shows a degraded classification of about 25% correctly classified instances, hence identifying Snort weaknesses towards certain attack types and giving leads on how to overcome those weaknesses. 

es.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 01 2025
Journal Name
Al-khwarizmi Engineering Journal
Deep-Learning-Based Mobile Application for Detecting COVID-19
...Show More Authors

Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Main Difficulties Faced by EFL Students in Language Learning
...Show More Authors

Many undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers.  This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning.  A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study wh

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
3D scenes semantic segmentation using deep learning based Survey
...Show More Authors
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jul 13 2023
Journal Name
International Journal Of Research In Social Sciences &amp; Humanities
Subject Review: Blogs as Learning Tools in EFL Classrooms
...Show More Authors

Blogs have emerged as a powerful technology tool for English as a Foreign Language (EFL) classrooms. This literature review aims to provide an overview of the use of blogs as learning tools in EFL classrooms. The study examines the benefits and challenges of using blogs for language learning and the different types of blogs that can be used for language learning. It provides suggestions for teachers interested in using blogs as learning tools in their EFL classrooms. The findings suggest that blogs are a valuable and effective tool for language learning, particularly in promoting collaboration, communication, and motivation.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of The College Of Languages (jcl)
Learning English through Scaffolded Assistance in Iraqi EFL Classroom
...Show More Authors

Learning a foreign language is a highly interactive process, and a belief that communicative activities foster a great amount of linguistic production provides language practice and opportunities for negotiation of meaning during communicative exchanges. Thus, this study examines what benefits learner-centered classroom setting offers compared with that of teacher–centered classroom, and how less proficient learners accomplish their tasks and activities with scaffolded help during interaction with the help of proficient classmates and under the guidance of a skilful person, i.e., the teacher. The subjects participating in this study are 30 Iraqi 4th year college students in the Department of English, College of Arts , Univer

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of College Of Education For Women
Main Difficulties Faced by EFL Students in Language Learning
...Show More Authors

Many undergraduate learners at English departments who study English as a foreign language are unable to speak and use language correctly in their post -graduate careers. This problem can be attributed to certain difficulties, which they faced throughout their education years that hinder their endeavors to learn. Therefore, this study aims to discover the main difficulties faced by EFL students in language learning and test the difficulty variable according to gender and college variables then find suitable solutions for enhancing learning. A questionnaire with 15 items and 5 scales were used to help in discovering the difficulties. The questionnaire was distributed to the selected sample of study which consists of 90 (male and female) stud

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
Employ GIS technology GIS in the educational process – learning
...Show More Authors

Witnessing human societies with the turn of the century atheist twenty huge revolution in information , the result of scientific and technological developments rapidly in space science and communications , and that made the whole world is like a small village not linked by road as it was in ancient times, through the rapid transportation as was the case a few years ago , thanks to the remote sensing devices that roam in space observant everything on the ground , that the information networks that overflowed the world a tremendous amount of information provided for each inhabitants of the earth , which made this information requirement for human life and human survival and well-being , as it has allowed that information to humans opportun

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials &amp; Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed

... Show More
View Publication Preview PDF
Crossref (3)
Crossref