Preferred Language
Articles
/
joe-1666
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade the detection rates of current NIDSs, thorough analyses are essential to identify where ML predictors outperform them. The first step is to provide assessment of most used NIDS worldwide, Snort, and comparing its performance with ML classifiers. This paper provides an empirical study to evaluate performance of Snort and four supervised ML classifiers, KNN, Decision Tree, Bayesian net and Naïve Bays against network attacks, probing, Brute force and DoS. By measuring Snort metric, True Alarm Rate, F-measure, Precision and Accuracy and compares them with the same metrics conducted from applying ML algorithms using Weka tool. ML classifiers show an elevated performance with over 99% correctly classified instances for most algorithms, While Snort intrusion detection system shows a degraded classification of about 25% correctly classified instances, hence identifying Snort weaknesses towards certain attack types and giving leads on how to overcome those weaknesses. 

es.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 16 2025
Journal Name
International Journal Of Engineering Pedagogy (ijep)
Utilizing Machine Learning Techniques to Predict University Students' Digital Competence
...Show More Authors

Given the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Networks And Systems
Using Machine Learning to Control Congestion in SDN: A Review
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Tue Nov 24 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
The Impact of External Environment Factors on the Quality of Educational Services (An Empirical Study): The Impact of External Environment Factors on the Quality of Educational Services (An Empirical Study)
...Show More Authors

This research aims to identify the role of external environment factors on the quality of educational services, from the academic point of view, where the distribution of a questionnaire to a random sample of (100) university professors, and then analyzing a model, and test the validity of this model using structural modeling (SEM) (Structural Equation Modeling).
And then test the relationships between variables using the software of Statistical Package for Social Sciences (SPSS V.18), the research found a number of conclusions, the most important conclusion is: the external environment factors has significant impact on the quality of educational services.

View Publication Preview PDF
Publication Date
Sun Jul 30 2023
Journal Name
American Journal Of Environmental Economics
Impact of Brand Capital on the Stock Price Crash Risk, an Empirical Study
...Show More Authors

The factors influencing the financial market are rapidly becoming more complex. The impact of non-financial factors on the performance of a company’s common stock can increase in ways that were not previously expected. This study investigated how brand capital affects the risk of stock prices in Iraqi private banks listed on the Iraq Stock Exchange failing by identifying the likelihood of a crash caused by a negative deviation in the distribution of returns on ordinary shares. As a result, the current study’s concept is to review an analytical knowledge framework of the nature of that relationship, its changes, and its impact on the pricing of ordinary shares of the banks of the researched sector for the years 2009 to 2017, as w

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Crossref (2)
Clarivate Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Al-nahrain Journal For Engineering Sciences
Navigating the Challenges and Opportunities of Tiny Deep Learning and Tiny Machine Learning in Lung Cancer Identification
...Show More Authors

Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Procedia Economics And Finance
Impact of Information Technology Infrastructure on Innovation Performance: An Empirical Study on Private Universities In Iraq
...Show More Authors

View Publication Preview PDF
Crossref (54)
Clarivate Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Al–bahith Al–a'alami
The Arts of Media Writing / An Empirical Study on the Privacy of Media Writing
...Show More Authors

Media writing is accuracy writing. Clarity and concision are its predominant features. It is a writing that goes straight to the essence because it has no time to waste. Furthermore, it must be as accurate as scientific writing. It is destined for the average reader and has to be understood by everyone. However, it can be as elegant as literary writing. The variety in its forms of expression does not prevent media writing from having its own amplitude.

In short, this study is a practical approach that aims at studying different kinds of writing styles and identifying the specificity of media writing using some patterns and examples

View Publication Preview PDF
Crossref