Preferred Language
Articles
/
joe-1666
An Empirical Investigation on Snort NIDS versus Supervised Machine Learning Classifiers
...Show More Authors

With the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade the detection rates of current NIDSs, thorough analyses are essential to identify where ML predictors outperform them. The first step is to provide assessment of most used NIDS worldwide, Snort, and comparing its performance with ML classifiers. This paper provides an empirical study to evaluate performance of Snort and four supervised ML classifiers, KNN, Decision Tree, Bayesian net and Naïve Bays against network attacks, probing, Brute force and DoS. By measuring Snort metric, True Alarm Rate, F-measure, Precision and Accuracy and compares them with the same metrics conducted from applying ML algorithms using Weka tool. ML classifiers show an elevated performance with over 99% correctly classified instances for most algorithms, While Snort intrusion detection system shows a degraded classification of about 25% correctly classified instances, hence identifying Snort weaknesses towards certain attack types and giving leads on how to overcome those weaknesses. 

es.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jul 19 2022
Journal Name
Arabian Journal For Science And Engineering
Investigation of the Impacts of Nanomaterials on the Micromechanical Properties of Gypseous Soils
...Show More Authors

View Publication Preview PDF
Scopus (26)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sat Jan 02 2016
Journal Name
Iraqi Postgraduate Medical Journal
Wallplasty Versus Non Wallplasty in Arthroscopically Assisted Anterior Cruciate Ligament Reconstruction
...Show More Authors

Abstract ABSTRACT:BACKGROUND: Anterior cruciate ligament reconstruction (ACLR) is one of the most commonly performed orthopedic procedures. Technical factors especially correct tunnel placement play major role in its success. However its failure rate is still high (10%), and impingement of the graft on the posterior cruciate ligament (PCL) and the medial wall of the lateral femoral condyle is an important cause of failure. Wallplasty is a technique used to prevent graft impingement, but there is no consensus on its routine use.OBJECTIVE:Is to compare between the postoperative knee functional outcome and stability of arthroscopic ACLR performed with wallplasty versus those performed without wallplasty.PATIENTS AND METHODS: A prospective exp

... Show More
Preview PDF
Publication Date
Wed Mar 29 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Goserelin versus Norethisterone in the Management of Menorrhagia with Uterine Fibroid
...Show More Authors

Menorrhagia is common in patients with uterine fibroids, if operation needs to be delayed for a particular reason, goserelin can be used safely to reduce bleeding and the size of the tumor.The objective is to compare between goserelin acetate and norethisterone on patients with menorrhagia and uterine fibroid. A randomized controlled study conducted in Elwiya maternity teaching hospital, Baghdad from the first of November 2007 to the end of April 2009. 90 patients from the consultant outpatient clinic with menorrhagia and fibroid, and their operations were delayed for medical reason were allocated in two groups, the first group, was given 3.2 mg goserelin acetate subcutaneously monthly for 3 months and the second group was given 5 mg nor

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Italian Journal Of Vascular And Endovascular Surgery
Retroperitoneal versus transperitoneal approach for aortoiliac occlusive disease: a comparative study
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Heliyon
Inter-personal versus content: assessment of communication skills in Iraqi physicians
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2023
Journal Name
2023 3rd International Conference On Intelligent Cybernetics Technology & Applications (icicyta)
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 06 2024
Journal Name
Journal Of Applied Engineering And Technological Science (jaets)
Deep Learning and Its Role in Diagnosing Heart Diseases Based on Electrocardiography (ECG)
...Show More Authors

Diagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Analyzing impact of competitive dimensions on the efficiency of e-learning: دراسه استطلاعيه
...Show More Authors

The aim of this research is to diagnose the impact of competitive dimensions represented by quality, cost, time, flexibility on the efficiency of e-learning, The research adopted the descriptive analytical method by identifying the impact of these dimensions on the efficiency of e-learning, as well as the use of the statistical method for the purpose of eliciting results. The research concluded that there is an impact of the competitive dimensions on the efficiency of e-learning, as it has been proven that the special models for each of the research hypotheses are statistically significant and at a level of significance of 5%, and that each of these dimensions has a positive impact on the dependent variable, and the research recommended

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Survey on distributed denial of service attack detection using deep learning: A review
...Show More Authors

Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks

... Show More
View Publication
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More