Preferred Language
Articles
/
joe-1655
Introduction and Investigation into Oil Well Logging Operations (Review)
...Show More Authors

ole in all sta

Oil well logging, also known as wireline logging, is a method of collecting data from the well environment to determine subterranean physical properties and reservoir parameters. Measurements are collected against depth along the well's length, and many types of wire cabling tools depend on the physical property of interest. Well probes generally has a dynamic respon to changes in rock layers and fluid composition. These probes or well logs are legal documents that record the history of a well during the drilling stages until its completion. Well probes record the physical properties of the well, which must then be interpreted in petrographic terms to obtain the characteristics of the rocks and fluids associated with the well. Many bases on which well probes are depend on obtaining information, and preventing the rocks from responding to stimuli sent by special devices, whether those stimuli are electrical, radioactive, or acoustic. In addition, there are electrically controlled mechanical bases used to measure the diameter of the well, its flow, pressure, perforation, and taking samples. Wireline refers to the technique of using the cable to deliver special equipment to the bottom of the well to repair, evaluation, or equipment recovery. A simple wireline consists of a shiny metal wire (called a slickline) that is very durable for tensile and wear operations. It is of (0.108" or 0.125") diameter. The equipment is installed at the end of the wire. Still, sometimes a braided cable is used from many small steel wires (Braided line), which makes it stronger and heavier than the first type. The information obtained from the logs is considered to assess geological areas based on porosity, permeability, hydrocarbon fluids, and shale ratio.  Well logging uses logs that are much cheaper than core operations and also cheaper than the information obtained from drilling mud. This review aims to pinpoint on the most important logging processes used in oil wells, as well logs have an effective role in all stages of the oil industry.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Study the Properties of Sodium Silicate Composite as a Barrier Separating Between the Internal Oil Distillation Towers and Chemical Fumes of Crude Oil
...Show More Authors

The study of surface hardness, wear resistance, adhesion strength, electrochemical corrosion resistance and thermal conductivity of coatings composed from sodium silicate was prepared using graphite micro-size particles and carbon nano particles as fillers respectively of concentration of (1-5%), for the purpose of covering and protecting the oil distillation towers. The results showed that the sodium silicate coating reinforced with carbon nano-powder has higher resistance to stitches, mechanical wear, adhesive and thermal conductivity than graphite/sodium silicate composite especially when the ratio 5% and 1%, the electrochemical corrosion test confirmed that the coating process of stainless steel 304 lead to increasin

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 13 2018
Journal Name
Journal Of Engineering
Comparison Between ESP and Gas Lift in Buzurgan Oil field/Iraq
...Show More Authors

Buzurgan oil Field which is located in south of Iraq has been producing oil for five decades that caused production to drop in many oil wells. This paper provides a technical and economical comparison between the ESP and gas lift in one oil well (Bu-16) to help enhancing production and maximize revenue. Prosper software was used to build, match and design the artificial lift method for the selected well, also to predict the well behavior at different water cut values and its effect on artificial lift method efficiency. The validity of software model was confirmed by matching, where the error difference value between actual and calculated data was (-1.77%).

The ESP results showed the durability of ESP regarding th

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Scientific Research Journal Of Engineering And Computer Science
Cryptography Techniques - A Review
...Show More Authors

l

Publication Date
Thu Sep 11 2025
Journal Name
Economic Sciences
Subject Review: Strategic mind
...Show More Authors

View Publication
Publication Date
Mon Oct 17 2022
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Review on Viral Encephalitis-
...Show More Authors

Background: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis. Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications. Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis. Conclusion: As new viruses emerge, diagnostic techniques advan

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 29 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering (ijasre), Issn:2454-8006, Doi: 10.31695/ijasre
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are applied in many different industries for a variety of purposes. Deep learning-based item detection from aerial or terrestrial photographs has become a significant research area in recent years. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed.  A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles and classification probabilities for an image. In layman's terms, it is a technique for instantly identifying and recognizing

... Show More
View Publication
Publication Date
Mon Jul 18 2022
Journal Name
World Bulletin Of Public Health (wbph)
WASTEWATER TREATMENTS: A REVIEW
...Show More Authors

Many water supplies are now contaminated by anthropogenic sources such as domestic and agricultural waste, as well as manufacturing activities, the public's concern about the environmental effects of wastewater contamination has grown. Several traditional wastewater treatment methods, such as chemical coagulation, adsorption, and activated sludge, have been used to eliminate pollution; however, there are several drawbacks, most notably high operating costs, because of its low operating and repair costs, the usage of aerobic waste water treatment as a reductive medium is gaining popularity. Furthermore, it is simple to produce and has a high efficacy and potential to degrade pollu

... Show More
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Advances In Scientific Research And Engineering
Yolo Versions Architecture: Review
...Show More Authors

Deep learning techniques are used across a wide range of fields for several applications. In recent years, deep learning-based object detection from aerial or terrestrial photos has gained popularity as a study topic. The goal of object detection in computer vision is to anticipate the presence of one or more objects, along with their classes and bounding boxes. The YOLO (You Only Look Once) modern object detector can detect things in real-time with accuracy and speed. A neural network from the YOLO family of computer vision models makes one-time predictions about the locations of bounding rectangles andclassification probabilities for an image. In layman's terms, it is a technique for instantly identifying and rec

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Water Practice & Technology
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe</p> ... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Geological Journal
Wellbore Instability Analysis to Determine the Safe Mud Weight Window for Deep Well, Halfaya Oilfield
...Show More Authors

Wellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations

... Show More
View Publication
Scopus Crossref