Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was (26.24%), and (5.5%), and AA was (74%), and (94.5%), for cost and time model, respectively. The researcher concluded that the ANN model has a strong correlation and high accuracy, indicating that these models are characterized by high efficiency and good performance in predicting cost and time.
Background: despite the rise in the incidence of renal cell carcinoma attributed to availability of medical imaging, a considerable decline in mortality is an association. Morbidity-wise, the shift from radical nephrectomy to partial nephrectomy is the trend for now. Multiple scoring systems have been introduced over the past decades to help surgeons choose between radical and partial nephrectomy. One commonly used system is the RENAL nephrometry score that was first introduced by Kutikov and Uzzo in 2009.
Objective: to evaluate the role of RENAL nephrometry scoring system in predicting the surgical technique to use to resect renal masses and associated perioperative outcomes.
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
The finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi
The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreBuzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal in
... Show MoreBuzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal instabi
... Show MoreGiven the importance of possessing the digital competence (DC) required by the technological age, whether for teachers or students and even communities and governments, educational institutions in most countries have sought to benefit from modern technologies brought about by the technological revolution in developing learning and teaching and using modern technologies in providing educational services to learners. Since university students will have the doors to work opened in all fields, the research aims to know their level of DC in artificial intelligence (AI) applications and systems utilizing machine learning (ML) techniques. The descriptive approach was used, as the research community consisted of students from the University
... Show More 
        