Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra
We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St
... Show MoreLow back pain a major causes of morbidity throughout the world and it is a most debilitating condition ,and can lead to decreased physical function ,compromised quality of life, and psychological distress.
Obesity is nowadays a pandemic condition. Obese subjects are commonly characterized by musculoskeletal disorders and particularly by non-specific LBP. However, the relationship between obesity and LBP remain to date unsupported by objective measurements of mechanical behavior of spine and it is morphology in obese subjects. &nb
... Show MoreThis paper aims to give an overview of acculturation in the literature by means of its explicit definitions, main characteristics, and categorical process. It also foreshadows the significance of acquiring novice culture with particular connection to second language acquisition. Schumann and John Berry underscored acculturation each with its own model of acculturation. In the case of this review, you will realize that Schumann's two main aspects are firmly rooted in berry's model of acculturation as an exclusive description in relation to second language acquisition. Steven Krashen outlined acquiring language from the intellectual and linguistic view of learning, whereas Micheal Long demanded for communication in social perspective. It has
... Show MoreHS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020
Language mirrors understanding of the same or other culture. Meaning is hardly encoded in the world community. Some linguists cannot solve language problems because of its abstractedness. Language communicators learn the second or foreign language at schools for three reasons. First, English is not their first language. Second, they have little or no educational background in experiencing what they know in another language. Third, they have not improved their communication skills in English. Analyzing the language as a mean of communication would not be learned enough without its practice. This paper gives an exclusive preview of applied linguistics. It defines the conversion of different areas of the study of language with second o
... Show MoreLow back pain a major causes of morbidity throughout the world and it is a most debilitating condition ,and can lead to decreased physical function ,compromised quality of life, and psychological distress. Obesity is nowadays a pandemic condition. Obese subjects are commonly characterized by musculoskeletal disorders and particularly by non-specific LBP. However, the relationship between obesity and LBP remain to date unsupported by objective measurements of mechanical behavior of spine and it is morphology in obese subjects. Key words: obesity, low back pain,
A Pap test can identify the pre-cancerous and cancerous problem in the vagina and uterine cervix. Cervical tumour is the easiest gynecologic disease to be diagnosed, treated and prevented using regular screening tests and follow-up. This review aimed to explore the opinion of specialists about cytological changes and the precancerous lesions with Pap smear test and visual inspection of the cervices, also to determine the relationship of this malignancy with demographic characteristics of patients. Results showed that few cervical cancer and pre-cancer were with women in postmenopausal period, but more were with women in the premenopausal period. Visual inspection of the cervix can show erosion lesions by gross inspection. Upon cytology exam
... Show More