Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze medical images with favorable results. It can help save lives faster and rectify some medical errors. In this study, we look at the most up-to-date methodologies for medical image analytics that use convolutional neural networks on MRI images. There are several approaches to diagnosing and classifying brain cancers. Inside the brain, irregular cells grow so that a brain tumor appears. The size of the tumor and the part of the brain affected impact the symptoms.
Steel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial
... Show MoreA hybrid Gas-Enhanced and Downhole Water Sink-Assisted Gravity Drainage (GDWS-AGD) process has been suggested to enhance oil recovery by placing vertical injectors for CO2 at the top of the reservoir with a series of horizontal oil-producing and water-drainage wells located above and below the oil-water contact, respectively. The injected gas builds a gas cap that drives the oil to the (upper) oil-producing wells while the bottom water-drainage wells control water cresting. The hybrid process of GDWS-AGD process has been first developed and tested in vertical wells to minimize water cut in reservoirs with bottom water drive and strong water coning tendencies. The wells were dual-compl
To assess the impact of COVID‐19 on oral hygiene (OH) awareness, attitude towards dental treatment, fear of infection and economic impact in the Middle East.
This survey was performed by online distribution of questionnaires in three countries in the Middle East (Jordan, Iraq and Egypt). The questionnaire consisted of five sections: the first section was aimed at collecting demographic data and the rest sections used to assess OH awareness, attitude towards dental treatment, degree of fear and economic impact of COVID‐19. The answers were either multiple choice, closed‐end (Yes or N
The radon gas concentration in environmental samples soil and water of selected regions in Al-Najaf governorate was measured by using alpha-emitters registrations which are emitted form radon gas in (CR-39) nuclear track detector. The first part is concerned with the determination of radon gas concentration in soil samples, results of measurements indicate that the highest average radon concentration in soil samples was found in (Al-Moalmen) region which was (100.0±7.0 Bq/m3), while the lowest average radon concentration was found in (Al-Askary) region which was (38.5±4.7 Bq/m3), with an average value of (64.23±14.9 Bq/m3) ,the results show that the radon gas concentrations in soil is below the allowed limit from (ICRP) agency which is (
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreThin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
Q-switch Nd: YAG laser of wavelengths 235nm and 1,460nm with energy in the range 0.2 J to 1J and 1Hz repetition rate was employed to synthesis Ag/Au (core/shell) nanoparticles (NPs) using pulse laser ablation in water. In this synthesis, initially the silver nano-colloid prepared via ablation target, this ablation related to Au target at various energies to creat Ag/Au NPs. Surface Plasmon Resonance (SPR), surface morphology and average particle size identified employing: UV-visible spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance spectra of Ag NPs and Ag/Au NPs showed sharp and single peaks around 400nm and 410nm, respec
A theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were st
... Show More