This study was set out to investigate factors affecting labor productivity on construction in the north of Iraq (Kurdistan) and to rank all the factors based on engineers, contractors, and designer’s opinions. 76 factors were analyzed based on previous literature and a pilot study. Next, by using online Google Form, a questionnaire form was created and sent to people who have experience in the construction industry. Afterward, the questionnaire form was sent to targeted people by email and social media apps. Factors were divided into nine groups “Management, Technical and Technology, Human and Workforce, Leadership, Motivation, Safety, Time, Material and Equipment, and External”. However, 202 respondents participated in this study, and they were asked to give weight to the factors using the Likert scale from 1 to 5. Finally, the Relative Importance Index RII was used to determine the factors statically with MS Excel 2015. In brief, all the respondents agreed upon “Economic condition in the country” is the first ranking factor. While “Site complication” was the last factor that affect labor productivity in construction. Last but not least, the “Motivation” group was the first ranked group. Apart from the factors, respondents agreed that Site Engineers have more effect on construction projects than Contractors and Designers.
There is no doubt that teachers are the leaders of positive changing in community where they directed the students and build their brains. In our current generation that characterized by accelerated technological development that communication changes, economic and politics, needs from the teacher an active leadership skills that match with the soul of our generation and contribute in confrontation the current challenges and the future challenges in the form that lead to create a conscious generation where they will be a basic brick for the future community where the listeners looking forward the education where they support the continuity communication of develop process, economy, scientifically and in all life fields. In our study we take
... Show MoreThis research investigates the pre- and post-cracking resistance of steel fiber-reinforced concrete specimens with Glass Fiber Reinforced Polymer (GFRP) bars subjected to flexural loading. The purpose is to modify the ductility and cracking resistance of GFRP-reinforced beams, which are prone to early cracking and excessive deflections instigated by the low modulus of elasticity of GFRP. Six self-compacting concrete specimens (1500×240×200 mm), incorporating steel fibers of two lengths (25 mm and 40 mm) with varying distribution depths, were tested to assess their structural performance. The results indicate significant enhancements in cracking resistance, stiffness, energy absorption, ductility, and flexural strength. Tested beam
... Show MoreThis article deals with the impact of including transverse ribs within the absorber tube of the concentrated linear Fresnel collector (CLFRC) system with a secondary compound parabolic collector (CPC) on thermal and flow performance coefficients. The enhancement rates of heat transfer due to varying governing parameters were compared and analyzed parametrically at Reynolds numbers in the range 5,000–13,000, employing water as the heat transfer fluid. Simulations were performed to solve the governing equations using the finite volume method (FVM) under various boundary conditions. For all Reynolds numbers, the average Nusselt number in the circular tube in the CLFRC system with ribs was found to be larger than that of the plain abs
... Show MoreIn this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.
The insulation system of a machine coil includes several layers made of materials with different characteristics. The effective insulation design of machine coils, especially in the machine end winding, depends upon an accurate model of the stress grading system. This paper proposes a modeling approach to predict the transient overvoltage, electric field, and heat generation in machine coils with a stress grading system, considering the variation of physical properties in the insulation layers. A non-uniform line model is used to divide the coil in different segments based on material properties and lengths: overhang, stress grading and slot. The cascaded connection of chain matrices is used to connect segments for the representation of the
... Show MoreAbstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More