This study aims to suggest a technique for soil properties improvement of AL- Kadhimin shrine Minaret and to support the foundation, which has a tilt of roughly 80 cm from the vertical axis. The shrine of the AL- Kadhimin is made up of four minarets with two domes set in a large courtyard. The four minarets have skewed to varying degrees due to uncontrolled dewatering inside the shrine in recent years. However, the northeast minaret was the most inclined due to its proximity to the well placed inside shrine courtyard. When the well near the minaret is operated, the water level drops, increasing the effective stresses of the soil and causing differential settling of the minaret foundation. To maintain the minaret's foundation from potential lateral stresses, a micropile system has been proposed around it. PLAXIS 3D is used to do a three-dimensional numerical analysis in this study. A micropile system of several diameters has been considered for the suggested technique. In the analysis, the modeling and verification findings revealed that the suggested micropile system plays a significant role in incrementing the minaret's lateral load resistance (earthquake).
Increased attention to corporate governance with the increasing need for investors and other parties in the Iraqi market for securities of the information credible and confidence and greater transparency in the disclosure as well as the systems of governance lead to raise the value of the company and that by reducing the cost of capital and reduce the cost of financing, as well as that there are indications modern measurement can be adopted by the Iraqi market for securities for the purpose of evaluating the performance of listed companies and then raise their value.
The research problem is that there is no framework or structure of the legal and local rules for the application of corporate governance in Iraq obliges
... Show MoreBackground: The polymethyl methacrylate is the most reliable material for the construction of complete and partial dentures, despite satisfying esthetic demand itsuffered from having unsatisfactory properties like impact strength and transverse strength. This study was designed to improve the impact strength and transverse strength of heat cure acrylic resin by adding untreated and oxygen plasma treated polypropylene fibers and investigate the effect of this additive on some properties of acrylic resin materials. Materials and methods: Untreated and oxygen plasma treated polypropylene fibers was added to PMMA powder by weight 2.5 %. Specimens were constructed and divided into 5 groups according to the using tests; each group was subdivided
... Show MoreThis in vitro study evaluated the influence of chemomechanical caries removal solution on the surface topography of metal-ceramic feldspar porcelain (MAJOR ceramic) and All-ceramic feldspar porcelain (Vita Alpha) using light polarizing microscope. Forty specimens of MAJOR ceramic and forty specimens of Vita Alpha ceramic of (12mm diameter & 3mm height) were prepared .All specimens were polished with silicon polishing burs, cleaned, autoglazed and stored in 37°C before exposure to Carisolv. Thirty specimens of each material randomly exposed to Carisolv gel for 5, 10 and 20 minutes respectively, other ten specimens were not, to act as control group. All specimens were subjected to surface roughness test by profilometer and evalua
... Show MoreBackground: this study aimed to evaluate the effect of addition of hydroxyapatite micro filler in three concentrations (5%, 10%, 15%) on surface roughness, impact strength, flexural strength and hardness. Material and methods: One hundred sixty acrylic samples were used in this study,40 samples were used for each test(impact strength ,flexural strength ,hardness and surface roughness).The test group divided into four subgroups(n=10) for controlgroup,5%,10% ,15%H,A.concentration addition groups .Impact testing device, flexural strength testing device, shore hardness tester and profilometer device were used to measure the four tests examined in this study. Results: the results showed a significant increase in impact strength, hardness in all
... Show MoreA factorial experiment was conducted at the College of Education for Pure Sciences Ibn al Haitham/University of Baghdad for the 2023 growing season to study the effect of the biofertilizer represented by the mycorrhizae vaccine and the NPK Nano fertilizer on some indicators of vegetative and root growth, yield, and volatile oil production of the basil plant, Ocimum basilicum L., the experiment included two factors. The rst factor was mycorrhizae inoculum at 2 levels: 0 (no addition) and an addition of 25 g plant–1, as the seeds were inoculated upon planting. The second factor was spraying the plant’s shoots with NPK Nano fertilizer at four levels (0, 0.5, 1, 1.5) g l–1. The results showed a signicant eect of the treatment of inocula
... Show MoreTo achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreCdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.
Most approaches to combat antibiotic resistant bacteria concentrate on discovering new antibiotics or modifying existing ones. However, one of the most promising alternatives is the use of bacteriophages. This study was focused on the isolation of bacteriophages that are specific to some of commonly human pathogens namely E. coli, Streptococcus pyogenes, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella spp. and Klebsiella pneumoniae. These bacteriophages were isolated from sewages that were collected from four different locations in Kirkuk City. Apart from S. pyogenes, bacteriophages specific to all tested bacteria were successfully isolated and tested for their effectiveness by spot test. The most effective
... Show MoreJumping ability is a fundamental variable in many sports, as its execution requires an integration of muscular strength Q1 and certain biomechanical variables. This is particularly evident in gymnastics jumping events and jump shots in ball games, both of which rely on a high level of vertical resistance. Vertical resistance serves as an indicator of an athlete’s ability to overcome their body weight while counteracting gravitational force to achieve optimal performance. As such, it is considered one of the key factors in movements that demand explosive power and speed. The researchers believe that despite the significant relationship between vertical resistance, speed-strength of the arms and legs, and certain biomechanical varia
... Show MoreThin films of CdTe were prepared with thickness (500, 1000) nm on the glass substrate by vacuum evaporation technique at room temperature then treated different annealing temperatures (373,473,and 573)K for one hour. Results of the Hall Effect and the electrical conductivity of (I-V) characteristics were measured in darkness and light.at different annealing temperature results show that the thin films have ability to manufacture solar cells, and found that the efficient equal to (2.18%) for structure solar cell (Algrid / CdS / CdTe /glass/ Al) and the efficient equal to (1.12%) for structure solar cell (Algrid / CdS / CdTe /Si/ Al) with thick ness of (1000) nm with CdTe thin films at RT.