This work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests are used. The Vickers micro-hardness and porosity properties of these alloys were studied using a Vickers micro-hardness and porosity tester according to ASTM b328-1996. The results showed that increasing the concentration of aluminum nanoparticles in the alloy led to an increase in hardness with a decrease in the porosity, and the sample (15%) gave the best hardness (190.8 HV). The sample (0%) gave the highest porosity (19.573) %.
The CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
Steel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm
We need to know the basic facts concerning planning top and bottom limits including any critical levels or the threshold over which the cost would be much higher for land development. Therefore this paper concerned with Baghdad Municipality decision No.2/1004 dated 7/12/2004. The reason behind this decision is the hope to face up at least in the severe housing crisis in the city of Baghdad. This paper attempts to know the attitude of the local community in the general through a field study of people living near such dwelling where third floors are added of. This might indicate any positive or negative effects whether on short or long-term including its effect on the theoretical side including the population growth of Baghdad, the
... Show MoreThe aim of this work is synthesis of _Eoly (Vinyl-4-AminoBenzoate) (PVAB) from reaction of _Eoly Vinyl Alkohol PVA with 4-aminobenzoyl chloride in alkaline media. We also prepare the metal complexes of poly (vinyl- 4-aminobenzoate) and antimicrobial properties were evaluated by dilute method against five pathogenic bacteria (Escherichia coli, Shigella dysentery, Klebsiella pneumonae, Staphylococcus aureus, Staphylococcus Albus) and two fungal (Aspergillus Niger, Yeast). All polymer metal complexes showed different activities against the various microbial isolates. The polymer metal complexes showed higher activity than the free polymer.
Chemical spray pyrolysis technique was used at substrate temperature 250 ˚C with annealing temperature at 400 ˚C (for 1hour) to deposition tungsten oxide thin film with different doping concentration of Au nanoparticle (0, 10, 20, 30 and 40)% wt. on glass substrate with thickness about 100 nm. The structural, optical properties were investigated. The X-ray diffraction shows that the films at substrate temperature (250 ˚C) was amorphous while at annealing temperature have a polycrystalline structure with the preferred orientation of (200), all the samples have a hexagonal structure for WO3 and Au gold nanoparticles have a cubic structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films. The optical pr
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreThis study was conducted to estimate the extent of damage to the population in Basra, southern Iraq, specifically the areas adjacent to the Shatt al-Arab and the Arabian Gulf, which are the Al-Fao district and the Al-Siba region. They are affected by the progression of saline water resulting from the lack of water imports and the Karun River interruption, which led to high concentrations of salts in the Shatt Al-Arabs. Consequently, its effect on lands and all life types in these areas requires correcting a map of the study area to drop the groundwater sites as well as calculate the total dissolved salts, electrical conductivity and pH. This study concluded that the groundwater contains very high percentages of total dissolved solid
... Show More