This work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffraction (XRD) and scanning electron microscopy (SEM) tests are used. The Vickers micro-hardness and porosity properties of these alloys were studied using a Vickers micro-hardness and porosity tester according to ASTM b328-1996. The results showed that increasing the concentration of aluminum nanoparticles in the alloy led to an increase in hardness with a decrease in the porosity, and the sample (15%) gave the best hardness (190.8 HV). The sample (0%) gave the highest porosity (19.573) %.
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show MorePorosity and pore structure are important characteristics of pharmaceutical tablets, since they influence the physical properties, such as mechanical strength, density and disintegration time. This paper is an attempt to investigate the pore structure of four different paracetamol tablets based on mercury porosimetry. The intrusion volumes of mercury were used to calculate the pore diameter, pore volume and pore size distribution. The result obtained indicate that the variation of the pore volume in the tablets followed the sequence:- S.D.I. Iraq? Pharmacare,Dubai-U.A.E.? Bron and Burk(UK) London?Lark Laboratories(India), while the variation of surface area followed the sequence:- S.D.I. Iraq? Lark Laboratories(India)? Pharmacare,Dubai-U.A
... Show MoreThe aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreA new Schiff base ligand Bis-1,4-di[N-3-(2-hydroxy-1-amino)- acetophenonylidene] benzylidene [L] and its complexes with (Mn(II) ,Co(II) ,Ni(II and Cu(II)) were synthesized . The ligand was prepared in two steps. In the first step a solution of (terphthalaldehyde) in methanol reacts under reflux with (p-aminoacetophenone) to give an intermediate compound [1-[3-({4-[(3-Acetyl-phenylimino)-methyl]-benzylidene}-amino)-phenyl]- ethanone which reacts in the second step with (2-Amino-phenol) giving the mentioned ligand. The complexes were synthesized by addition the corresponding metal salt solution to the solution of the ligand in methanol under reflux in (1:1) metal to ligand ratio. On the basis of, molar conductance, I.R., UV-Vis, HPLC, chlorid
... Show MoreThermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3
To evaluate the Interaction of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Zn(II) And Cd(II) Mixed- Ligand Complexes of cephalexin mono hydrate (antibiotics) And Furan-2-Carboxylic Acid To The Different DNA Sources. All the metal complexes were observed to cleave the DNA. A difference in the bands of complexes .The cleavage efficiency of the complexes compared with that of the control is due to their efficient DNA-binding ability and the other factors like solubility and bond length between the metal and ligand may also increase the DNA-binding ability. The ligands (Cephalexin mono hydrate (antibiotics) and Furan-2- Carboxylic acid and there newly synthesized metal complexes shows good antimicrobial activities and Binding DNA , thus, can be used
... Show MoreDrilling solutions can be considered as an intricate mixture comprising of number of chemical additives which aid specific needs such as controlling the rheological properties and reducing corrosion. Inhibitors are substances that are added in small concentrations to corrosive environment to decrease the corrosion. Their applications can be found in drilling equipments. The effect of adding Zinc Sulphate and Carboxymethyl Cellulose to study their influence on the corrosion of carbon steel in Bentonite mud has been evaluated using Weight Loss Technique. This study focuses on determining rheological properties and corrosion characteristics. Results show CMC and ZnSO4 work as inhibitors when added to the Bentonite with inhibition
... Show MoreIn this paper, investigates the biosynthesis of gold nanoparticles (AuNPs) by biochemical method using Myrtus communis leaves extract as reducing agent and Chloroauric acid (HAuCl4) as precursors. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and FTIR were used in addition to UV-visible spectroscopy (UV) in order to characterize the AuNPs. The biosynthesized AuNPs exhibited inhibitory effects on alpha amylase and alkaline phosphatase in sera of patient with type 2 Diabetes Miletus and the sera of healthy control subjects; the inhibition percentage with alpha amylase was 72 % and 45 % for patient and control group respectively. Oral consent obtained from the most of patients and healthy subjects before them being under
... Show MoreThin-walled members are increasingly used in structural applications, especially in light structures like in constructions and aircraft structures because of their high strength-to-weight ratio. Perforations are often made on these structures for reducing weight and to facilitate the services and maintenance works like in aircraft wing ribs. This type of structures suffers from buckling phenomena due to its dimensions, and this suffering increases with the presence of holes in it. This study investigated experimentally and numerically the buckling behavior of aluminum alloy 6061-O thin-walled lipped channel beam with specific holes subjected to compression load. A nonlinear finite elements analysis was used to obtain the
... Show More