Preferred Language
Articles
/
joe-1621
Wormholes Models for the Optimum Matrix Acidizing in Mi4 Unit-Ahdeb Oil Field
...Show More Authors

Innovative laboratory research and fluid breakthroughs have improved carbonate matrix stimulation technology in the recent decade. Since oil and gas wells are stimulated often to increase output and maximum recovery, this has resulted in matrix acidizing is a less costly alternative to hydraulic fracturing; therefore, it is widely employed because of its low cost and the fact that it may restore damaged wells to their previous productivity and give extra production capacity. Limestone acidizing in the Mishrif reservoir has never been investigated; hence research revealed fresh insights into this process. Many reports have stated that the Ahdeb oil field's Mishrif reservoir has been unable to be stimulated due to high injection pressures, which make it difficult to inject acid into the reservoir formation; and (ii) only a few acid jobs have been successful in Ahdeb oil wells, while the bulk of the others has been unsuccessful. Based on an acid efficiency curve, an ideal gel acid (HCl 15%) injection rate for this reservoir was 2.16 cc/min. This injection rate produces an optimal wormhole and the least amount of acid utilized. The optimum pore volume to breakthrough in wormhole propagation was 2.73, and the optimal interstitial velocity in wormhole propagation was 0.6 cm/min. Researchers have developed new formulae to compute the skin factor in anisotropic carbonates generated from matrix acidizing for the first time. This experiment revealed the need to acidify the matrix at the optimal injection rate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2019
Journal Name
Biochemical & Cellular Archives
A RE-SATURATION IMPACT ON SOIL RETENTION CURVE FOR FIVE DIFFERENT TEXTURED SOILS
...Show More Authors

Soil water retention curves (SWRCs) are crucial for characterizing soil moisture dynamics and are particularly relevant in the context of irrigation management. A study was carried out to obtain the SWRC, inflection point, S index, pore size distribution curve, macro porosity, and air capacity from samples submitted to saturation and re-saturation processes. Five different-texture disturbed soil samples Sandy Loam, Loam, Sandy Clay Loam, Silt Loam, and Clay were collected. After obtaining SWRC, each air-dried soil samples were submitted to particle size distribution and clay dispersed in water analyses to verify the soil lost clay. The experimental design was completely randomized with three replications using two processes of SWRC (saturat

... Show More
Scopus (4)
Scopus
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Quadrupole Moment & Deformation Parameter for Even-Even 38Sr (A=76-102) Nuclide
...Show More Authors

View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Iecon 2017 - 43rd Annual Conference Of The Ieee Industrial Electronics Society
Optimal second order integral sliding mode control for a flexible joint robot manipulator
...Show More Authors

The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S

... Show More
View Publication
Scopus (14)
Crossref (9)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (14)
Crossref (6)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Heat And Mass Transfer
Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
...Show More Authors

View Publication
Scopus (286)
Crossref (290)
Scopus Clarivate Crossref
Publication Date
Mon Sep 04 2023
Journal Name
2023 International Conference On Advanced Mechatronic Systems (icamechs)
Performance Analysis of Finite-Time Generalized Proportional Integral Observer for Uncertain Brunovsky Systems
...Show More Authors

This paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e

... Show More
View Publication
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Polymer Research
Design, and synthesis of a plasticizer- Schiff’s bases complexes as additive for polystyrene
...Show More Authors

This work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy disper

... Show More
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref