The primary components of successful engineering projects are time, cost, and quality. The use of the ring footing ensures the presence of these elements. This investigation aims to find the optimum number of geogrid reinforcement layers under ring footing subjected to inclined loading. For this purpose, experimental models were used. The parameters were studied to find the optimum geogrid layers number, including the optimum geogrid layers spacing and the optimum geogrid layers number. The optimum geogrid layers spacing value is 0.5B. And as the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (40%,28%, and 5%) respectively. The reduction percent of the lateral displacement for the spacing ratio (0.5B,0.75B,1B,1.25B) are (16%,10%,8%,7%), respectively. The optimum geogrid layers number is found to be 4. As the load inclination angle increased, the tilting and the tilting improvement percent for the load inclination angles (5°,10°,15°) are (45%,33%, and 8%), respectively. The reduction percent of the lateral displacement for the reinforcement layers number (1,2,3,4) are (12%,16%,18%,20%), respectively
The present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load
... Show MoreIn this paper, we introduce the notion of Jordan generalized Derivation on prime and then some related concepts are discussed. We also verify that every Jordan generalized Derivation is generalized Derivation when is a 2-torsionfree prime .
In this paper a Г-ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on Г-ring. We prove that if M is a 2-torsion free semiprime Г-ring , and are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations respectively for all n ϵN.
This study is concerned with channel banks slopes in the middle sector of Al-Massab Al-Aam channel in the middle and south of Iraq. The geotechnical properties of soil in the channel banks including physical ,engineering, chemical and mineralogical characters in over (25) station have been studied.
The grain size distribution of the bank soils of channel showed that the clay percentage is higher than those of the silt and sand percentages.
The bank soils are classified according to the USCS standards. They are composed of clay with low plasticity (CL) that represents 88% of the soil and ,clay with high plasticity (CH)represents 12% of the soil. The saturated density values ranges between 1.679 and 1.953 g/cm3 with average value of
The performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Al-Karkh district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performanc
... Show MoreIn this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M; In other words, M is a Max– module iff (0) is a *- submodule, where a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly. In this paper, some properties and characterizations of max– modules and *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.
... Show MoreIn this paper, we will generalized some results related to centralizer concept on
prime and semiprime Γ-rings of characteristic different from 2 .These results
relating to some results concerning left centralizer on Γ-rings.
Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
In this manuscript, the effect of substituting strontium with barium on the structural properties of Tl0.8Ni0.2Sr2-xBrxCa2Cu3O9-δcompound with x= 0, 0.2, 0.4, have been studied. Samples were prepared using solid state reaction technique, suitable oxides alternatives of Pb2O3, CaO, BaO and CuO with 99.99% purity as raw materials and then mixed. They were prepared in the form of discs with a diameter of 1.5 cm and a thickness of (0.2-0.3) cm under pressures 7 tons / cm2, and the samples were sintered at a constant temperature o
... Show MoreCarbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were