This study found that one of the constructive, necessary, beneficial, most effective, and cost-effective ways to meet the great challenge of rising energy prices is to develop and improve energy quality and efficiency. The process of improving the quality of energy and its means has been carried out in many buildings and around the world. It was found that the thermal insulation process in buildings and educational facilities has become the primary tool for improving energy efficiency, enabling us to improve and develop the internal thermal environment quality processes recommended for users (student - teacher). An excellent and essential empirical study has been conducted to calculate the fundamental values of thermal conductivity coefficient for different types of cement mortar, including the different concentrations of cellulosic fibers. And in our study, those cellulosic fibers obtained from sugarcane and sugarcane residues (agricultural waste materials) were used. The percentage is 10%; 20% and 30% of cellulose fibers were added to the cement mixtures. Then the differences are measured, specifically in the physical properties (heat capacity, density, and thermal conductivity coefficient) for 28 days. The Design-Builder program also implemented a precise simulation of the thermal loads of the external envelope of the educational building that is exposed to direct sunlight before and after the insulation process. It was found that with the use of thermal insulation material (meaning the cellulosic fiber technology) mixed with the cement mortar layer of the educational building, the given value of the heat transfer coefficient W/m2 Kelvin decreased by 47.2%. Accordingly, this contributed significantly to a significant and very significant saving in the values of electrical energy consumption by 11.9% for cooling and heating operations and to reducing dangerous carbon dioxide emissions by 52.2%. The simulation has shown that applying thermal insulation techniques to all buildings and educational facilities is highly recommended to save a large consumption in the value of electrical energy and the costs of waste materials and to ensure integrated protection for the ecosystem.
The study aimed to explore the effectiveness of using rational judgment strategy in teaching science to develop scientific thinking for second-grade students. The researcher utilized the quasi-experimental approach based on (the pre/post designing) of two groups: experimental and control. As for tools: a test of scientific thinking prepared by the researcher that proved its verification of their validity and reliability. The test applied on a random sample of (66) students, divided into two groups: (34) experimental, and (32) control. The results showed that the experimental group outperformed the control group in the post-application of the scientific thinking test, In each skill separately, and in the total skills. The study recommende
... Show MoreThin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency
Experimental tests were carried to control lost circulation in the Khabaz oil field using different types of LCMs including Nano-materials. A closed-loop circulation system was built to simulate the process of lost circulation into formations. Two dolomite plugs were used from different depths of the formation of Azkand in Khabaz oil field. The experimentations were carried out to study the effect of different types of LCMs, cross-linked copolymer (FLOSORB CE 300 S), SiO2 NP, and Fe2O3 NP, on mud volume losses as a function of time.
The rheological measurements of the nanoparticles-reference mud system showed that both of the SiO2 NP and Fe2O3 NP w
... Show MoreIn this paper, experimental study has been done for temperature distribution in space conditioned with Ventilation Hollow Core Slab (TermoDeck) system. The experiments were carried out on a model room with dimensions of (1m 1.2m 1m) that was built according to a suitable scale factor of (1/4). The temperature distributions was measured by 59 thermocouples fixed in several locations in the test room. Two cases were considered in this work, the first one during unoccupied period at night time (without external load) and the other at day period with external load of 800W/m2 according to solar heat gain calculations during summer season in Iraq. All results confirm the use of TermoDeck system for ventilation and cooling/heat
... Show MoreThe impact of COVID-19 pandemic on education models was mainly through the expansion of technology use in the different educational programs. Earlier impact of COVID-19 was manifested in the complete and sudden transition to distance education regardless of institution preparedness status. Gradually, many institutions are moving back to on-campus face-to-face education. However, others including all higher education institutions in Iraq are adopting the hybrid education model. This report presents part of the end of semester evaluation survey conducted at the University of Baghdad College of Pharmacy for the Spring 2021 semester. The survey aims to address points of strength and weakness associated with the hybrid education model and spe
... Show MoreBackground: Bone regeneration in dehiscence and fenestration defect can be improved with the use of platelet rich fibrin (PRF) that provides a scaffold for new bone regeneration. This study was conducted to assess the effectiveness of PRF as a graft material and membrane in dehiscence and fenestration defects. Materials and Methods: This prospective clinical study included patients who received dental implants that demonstrated peri-implant defects which were augmented using Leukocyte- PRF (L-PRF) or Advanced-PRF (A-PRF). Twenty four weeks postoperatively the defect resolution and the density of regenerated bone were assessed by CBCT and re-entry surgery. The assessment also included measurement of primary and secondary implant stability
... Show More