This study found that one of the constructive, necessary, beneficial, most effective, and cost-effective ways to meet the great challenge of rising energy prices is to develop and improve energy quality and efficiency. The process of improving the quality of energy and its means has been carried out in many buildings and around the world. It was found that the thermal insulation process in buildings and educational facilities has become the primary tool for improving energy efficiency, enabling us to improve and develop the internal thermal environment quality processes recommended for users (student - teacher). An excellent and essential empirical study has been conducted to calculate the fundamental values of thermal conductivity coefficient for different types of cement mortar, including the different concentrations of cellulosic fibers. And in our study, those cellulosic fibers obtained from sugarcane and sugarcane residues (agricultural waste materials) were used. The percentage is 10%; 20% and 30% of cellulose fibers were added to the cement mixtures. Then the differences are measured, specifically in the physical properties (heat capacity, density, and thermal conductivity coefficient) for 28 days. The Design-Builder program also implemented a precise simulation of the thermal loads of the external envelope of the educational building that is exposed to direct sunlight before and after the insulation process. It was found that with the use of thermal insulation material (meaning the cellulosic fiber technology) mixed with the cement mortar layer of the educational building, the given value of the heat transfer coefficient W/m2 Kelvin decreased by 47.2%. Accordingly, this contributed significantly to a significant and very significant saving in the values of electrical energy consumption by 11.9% for cooling and heating operations and to reducing dangerous carbon dioxide emissions by 52.2%. The simulation has shown that applying thermal insulation techniques to all buildings and educational facilities is highly recommended to save a large consumption in the value of electrical energy and the costs of waste materials and to ensure integrated protection for the ecosystem.
Between the duality of sound and image, the completeness of the actor’s personality at the director comes to announce the birth of the appropriate theatrical role for that character as the basic and inherent element of the artwork, within his working system in the pattern of vocal behavior as well as motor/signal behavior as he searches for aesthetic and skill proficiency at the same time.
This is done through the viewer’s relationship with the theatrical event, which the director considers as an area of active creative activity in relation to (the work of the actor) through vocal recitation and the signs it broadcasts in order to fulfill the requirements of the dramatic situation and what it requires of a visual vision drawn in t
The constructivist learning model is one of the models of constructivist theory in learning, as it generally emphasizes the active role of the learner during learning, in addition to that the intellectual and actual participation in the various activities to help students gain the skills of analyzing artistic works. The current research aims to know the effectiveness of the constructivist learning model in the acquisition of the skills of the Institute of Fine Arts for the skills of (technical work analysis). To achieve the goal, the researcher formulated the following hypothesis: There are no statistically significant differences between the average scores of the experimental group students in the skill test for analyzing artworks befor
... Show MoreActivated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
The present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreThis study examined the effect of essential oils extracted from peel of Citrus paradisi and Citrus sinensis on two species of fungi: Penicillium oxalicum and Fusarium oxysporum as well as effect of two fungicides: Carbendazim and Thiophanatemethyl against above fungi. Results showed that the essential oil of Citrus paradisi inhibited the radial growth of Penicillium oxalicum and Fusarium oxysporum at concentration 4%. Nevertheless, the essential oil of Citrus sinensis inhibited the radial growth at concentration 5 and 4%, respectively. Furthermore, the two studied fungicides inhibited radial growth of these fungi too. Therefore, there are a positive relationship between the evaluating of concentration and the percentage of inhibiting of rad
... Show MoreThe weather of Iraq has longer summer season compared with other countries. The ambient temperature during this season reaches over 50 OC which makes the evaporative cooling system suitable for this climate. In present work, the two-stage evaporative cooling system is studied. The first stage is indirect evaporative cooling (IEC) represented by two heat exchangers with the groundwater flow rate (5 L/min). The second stage is direct evaporative cooling (DEC) which represents three pads with groundwater flow rates of (4.5 L/min). The experimental work was conducted in July, August, September, and October in Baghdad. Results showed that overall evaporative efficiency of the system (two coils with three pads each
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show MoreThe problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline
... Show MoreThe Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
Physically based modeling approach has been widely developed in recent years for the simulation of dam failure process due to the lack of field data. This paper provides and describes a physically-based model depending on dimensional analysis and hydraulic simulation methods for estimating the maximum water level and the wave propagation time from breaching of field test dams. The field physical model has been constructed in Dabbah city to represent the collapse of the Roseires dam in Sudan. Five cases of a dam failure were studied to simulate water flood conditions by changing initial water height in the reservoir (0.8, 1.0, 1.2, 1.4 and 1.5 m respectively).The physical model working under five cases, case 5 had the greatest influence of t
... Show More