The main objective of this study is to examine the impact of moisture concrete of clayey soil on the concrete slabs placed directly over it. This experimental study presents the mechanical properties of the concrete slab when placed on different clayey soil moisture content ranging from 0% to the optimum moisture content of 35%. The tests were performed on soil concrete specimens of 25*30*50 mm exposed to sprayed water curing conditions for 28 days. Tests of compressive strength, ultrasonic pulse velocity, crack depth and crack width were investigated through this paper. An ejection relationship between compressive strength of concrete and water content in the soil was observed, with a 26% increase with water increasing from 0% to 35%. The opposite was observed in the ultrasonic pulse velocity test, with a decrease of 58% from 0% to the highest water content ratio. As for crack depth and width, it recorded the highest depth and lowest width at 0% water content due to the increased susceptibility of the soil to the absorption of water from the concrete when it’s totally dry. The experiment has shown that the soil moisture content is considered as a critical factor in controlling concrete cracking, and its variation has considerable implications for concrete crack growth.
Fadak farm project was selected to conduct this study in and to evaluate the state of quality and health indices in term of soil physical properties, where this farm is located in Holly Najaf Governorate. Some physical properties (soil texture, mean weight diameter, bulk density, porosity, infiltration rate, saturated hydraulic conductivity and available water) were selected to assess the quality then health indices, Results showed that classes of moderate and poor soil health were dominated in lands of this farm for physical properties It was noted that the class good of soil health wasnot collaterally appeared in areas for the physical characteristics.
Since its invention by the Ancient Romans and later developed during the mid-18th century, the concrete structure and finish, has been considered as the most powerful, practical, economic and constructional material that meets the building’s architectural and aesthetical requirements. By creating unique architectural forms, the pioneer architects used concrete widely to shape up their innovative designs and buildings.
The pre-mixed ultra-high performance concrete which manufactured by Lafarge.
The transparent concrete and cement that allow the light beams to pass through them, introduces remarkable well-lit architectural spaces within the same structural criteria. This product is a recyclable, sustainab
... Show MoreWhen embankment is constructed on very soft soil, special construction methods are adopted. One of the techniques is a piled embankment. Piled (stone columns) embankments provide an economic and effective solution to the problem of constructing embankments over soft soils. This method can reduce settlements, construction time and cost. Stone columns provide an effective improvement method for soft soils under light structures such as rail or road embankments. The present work investigates the behavior of the embankment models resting on soft soil reinforced with stone columns. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios of the stone columns, in addition to different
... Show MoreHigh tunnels, or unheated plastic greenhouses, are becoming increasingly popular among organic vegetable growers across the United States. However, the intensive production typical of these systems presents soil health challenges, including salinization due to high fertilizer or compost inputs coupled with lack of rainfall to leach salts. Legume cover crops may improve soil health in high tunnels by reducing the need for external inputs, while adding organic matter. We tested the soil health effects of a winter hairy vetch (Vicia villosa Roth) cover crop used to replace fertilizer N in an organic tomato cropping system in high tunnels. Studies were replicated across three sites differing in climate and soil type (Kansas, Kentucky, and Minne
... Show MoreIn this work, corrosion parameters were evaluated using potentiodynamic polarization curves. In order to determine corrosion parameters of potential and current density of the interesting metal, carbon steel, environmental conditions of external corrosion of buried carbon steel pipeline in Iraqi soil were prepared in the laboratory using simulated prepared conditions. Solutions of sodium chloride at different concentrations (300, 1100, 1900, 2700, and 3500 ppm) were used. pH of solution were acidic at pH =5, and alkaline at pH = 9. Laboratory conditions were similar to those of Iraqi soil where the pipelines were buried. Temperature was constant at 20 °C. Potentiodynamic polarization curves, of potential vs. log current density, were ob
... Show MoreGA Al Omran, AA Noaimi, Z Al Madfai, H Al Hamamy, Journal of the Faculty of Medicine Baghdad, 2012
An isolate of Leishmania major was grown on the semisolid medium and incubated at 26ºC. The isolate was irradiated by He: Ne laser (632.8 nm, 10 mW) at exposure times (5, 10, 15, 20, 25, 30) minutes in their respective order. The unirradiated groups represent control group. Growth rate and percentage of viability were examined during six days after irradiation. The change in these two parameters reflects the effect of irradiation on the parasite. The results refers that the general growth effected by irradiation in comparison with un irradiation group, The growth rate of parasite decrease with increasing the exposure time in comparison with control group. Parasite viability decrease with irradiation and the percentage of living cell dec
... Show MoreThis experiment was carried out in the College of Agricultural Engineering Sciences, Univ. of Baghdad, during autumn 2021 growing season to investigate possibility study of increase lettuce antioxidant and biological yield, growing and producing lettuce hydroponically under film technique (NFT) using a globally approved standard solution (Cooper solution), Nested design with three replications adopted in the experiment, each of them included in main plot the first factor, which is LED light (B and R), Then levels of second factor were randomly distributed within each replicate, which included spraying with organic nutrients which was Cymbopogon citratus and Hibiscus sabdariffa at two
There have been many advances in the solar chimney power plant since 1930 and the first pilot work was built in Spain (Manzanares) that produced 50 KW. The solar chimney power plant is considered of a clean power generation that needs to be investigated to enhance the performance by studying the effect of changing the area of passage of air to enhance the velocity towards the chimney to maximize design velocity. In this experimental and numerical study, the reduction area of solar collector was investigated. The reduction area that mean changing the height of glass cover from the absorbing plate (h1=3.8cm, h2=2.6cm and h3=1.28cm). The numerical study was performed using ANSYS Fluent software package (version 14.0) to solve go
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl