This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of slabs. This article aims to provide a numerical model for simulating the nonlinear behavior of such slabs, including a trustworthy finite element model approach and constitutive material models. In aspects of load-deflection and cracking patterns, comparisons between computational and experimental models are provided, and a reasonable fit is demonstrated. The average ratio of numerical model ultimate load and deflections to experimentally tested slabs were 0.992 and 0.913, respectively. As a result, finite element analysis may be regarded as a preferred and trustworthy approach for simulating the non-linear behavior of one-way slabs (strengthened or not) in terms of complexity, difficulty, time savings, human effort, and money.
This Investigation aims to study the effect of adding Steel fibers with different volume fractions Vf (o.5, 0.75, and 1% by volume of concrete) with aspect ratio 100 on mechanical properties of concrete, and also
finding the influence of petroleum products (Kerosene and Diesel) on mechanical properties of Steel Fiber Reinforced Concrete (SFRC).
The experimental work consists of two groups: group one consists of specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to continuous curing with water. Group two consists of
specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to kerosene and diesel after curing them in water for 28 days before exposure. The results of all te
The primary goal of in-situ load testing is to evaluate the safety and performance of a structural system under particular loading conditions. Advancements in building techniques, analytical tools, and monitoring instruments are prompting the evaluation of the appropriate loading value, loading process, and examination criteria. The procedure for testing reinforced concrete (RC) structures on-site, as outlined in the ACI Building Code, involves conducting a 24-h load test and applying specific evaluation criteria. This article detailed a retrofitting project for an RC slab-beams system by utilizing carbon fiber-reinforced polymer (CFRP) sheets to strengthen the structure following a fire incident. The RC structure showed indicators of deter
... Show MoreTrickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter disch
... Show MoreThe effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and hea
... Show MoreTo achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreSequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of
... Show MoreSubsurface soil water retention (SWRT) is a recent technology for increasing the crop yield, water use efficiency and then the water productivity with less amount of applied water. The goal of this research was to evaluate the existing of SWRT with the influence of surface and subsurface trickle irrigation on economic water productivity of cucumber crop. Field study was carried out at the Hawr Rajab district of Baghdad governorate from October 1st, to December 31st, 2017. Three experimental treatments were used, treatment plot T1 using SWRT with subsurface trickle irrigation, plot T2 using SWRT with surface trickle irrigation, while plot T3 without using SWRT and using surface tickle irrigation system. The obtained results showed that the e
... Show More
