Preferred Language
Articles
/
joe-1611
Finite Element Modeling of One-Way Recycled Aggregate Concrete Slabs Strengthened using Near-Surface Mounted CFRPs under Repeated Loading
...Show More Authors

This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of slabs. This article aims to provide a numerical model for simulating the nonlinear behavior of such slabs, including a trustworthy finite element model approach and constitutive material models. In aspects of load-deflection and cracking patterns, comparisons between computational and experimental models are provided, and a reasonable fit is demonstrated. The average ratio of numerical model ultimate load and deflections to experimentally tested slabs were 0.992 and 0.913, respectively. As a result, finite element analysis may be regarded as a preferred and trustworthy approach for simulating the non-linear behavior of one-way slabs (strengthened or not) in terms of complexity, difficulty, time savings, human effort, and money.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Evaluation of Rutting in Conventional and Rubberized Asphalt Mixes Using Numerical Modeling Under Repeated Loads
...Show More Authors

This research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conv

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Comparative Study between Recycled Fine and Coarse Aggregate Used in Roller Compacted Concrete Pavement
...Show More Authors

To decrease the impact on the environment of building waste, the recycled aggregate may be used in various sustainable engineering applications, such as roller compacted concrete pavement (RCCP). This research examined how using recycled aggregate as a partial replacement for natural aggregate as coarse or fine affected the mechanical properties of roller-compacted concrete pavement. The recycled aggregate was crushed and sieved to coarse and fine aggregate before being used in the roller-compacted concrete pavement. Compressive strength, splitting tensile strength, and flexural strength were all evaluated after the samples were prepared at 28 and 90 days of curing. According to the study's findings, the partial replacem

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 01 2019
Journal Name
Proceedings Of International Structural Engineering And Construction
FLEXURAL DUCTILITY OF STRUCTURAL CONCRETE MEMBERS SUBJECTED TO LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S

... Show More
Crossref
Publication Date
Wed May 01 2019
Journal Name
Proceedings Of International Structural Engineering And Construction
FLEXURAL DUCTILITY OF STRUCTURAL CONCRETE MEMBERS SUBJECTED TO LIMITED CYCLES OF REPEATED LOADING
...Show More Authors

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Civil Engineering Journal
Structural Behavior of High Strength Laced Reinforced Concrete One Way Slab Exposed to Fire Flame
...Show More Authors

In this study, an experimental investigation had conducted for six high strength laced reinforced concrete one-way slabs to discover the behavior of laced structural members after being exposed to fire flame (high temperature). Self-compacted concrete (SCC) had used to achieve easy casting and high strength concrete. All the adopted specimens were identical in their compressive strength of ( , geometric layout 2000 750 150 mm and reinforcement specifics except those of lacing steel content, three ratios of laced steel reinforcement of (0.0021, 0.0040 and 0.0060) were adopted. Three specimens were fired with a steady state temperature of  for two hours duration and then after the specimens were cooled suddenly by spraying water. The

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Engineering
Flexural Behavior of Reinforced Rubberized Reactive Powder Concrete Beams under Repeated Loads
...Show More Authors

Non-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.

The fine aggregate

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Mar 20 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Circular Tunnel Alignment Under Seismic Loading
...Show More Authors

The continuous increase in population has led to the development of underground structures like tunnels to be of great importance due to several reasons. One of these reasons is that tunnels do not affect the living activities on the surface, nor they interfere with the existing traffic network. More importantly, they have a less environmental impact than conventional highways and railways. This paper focuses on using numerical analysis of circular tunnels in terms of their behavior during construction and the deformations that may occur due to overburden and seismic loads imposed on them. In this study, the input data are taken from an existing Cairo metro case study; results were found for the lateral and vertical displacements, the Peak

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Numerical Modeling of Under Reamed Piles Behavior Under Dynamic Loading in Sandy Soil
...Show More Authors

Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numer­ical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Nov 07 2023
Journal Name
Innovative Infrastructure Solutions
Enhancing load-bearing performance of hybrid recycled aggregate concrete-filled columns using SBR, steel fibers and polypropylene fibers
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
One dimensional Finite Element Solution of Moving Boundaries in Far IR Laser Tissue Ablation
...Show More Authors

In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cut

... Show More
View Publication Preview PDF