Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost and time) for the maintenance of wastewater projects. The output shows there is a high correlation (R) between real and expected cost with 95.4%, minimized testing error (8.5%), and training error (19%). The mean absolute present error (MAPE) and Average Accuracy Percentage (AA) are (13.9% and 86.1%) respectively. Also, the results showed a strong correlation (R) between actual and predicted time (99.1%), minimized testing error (8%), and an additional MAPE% and AA% with (11.7% and 88.3%) respectively. These models are in agreement with the real values, as well as gives good prediction for future maintenance projects.
In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha
... Show MoreThe current research aimed to identify the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis. It also aims to identify the recovery and resuming plan to the business environment. The research followed the descriptive survey to find out the views of 34 internal auditors at various functional levels in the Kingdom of Saudi Arabia. Spreadsheets (Excel) were used to analyze the data collected by a questionnaire which composed of 43 statements, covering the tasks that the internal auditors can perform to face the COVID-19 crisis. Results revealed that the tasks performed by the internal auditors when developing a business continuity plan to face the COVID-19 crisis is to en
... Show MoreInterface evaluation has been the subject of extensive study and research in human-computer interaction (HCI). It is a crucial tool for promoting the idea that user engagement with computers should resemble casual conversations and interactions between individuals, according to specialists in the field. Researchers in the HCI field initially focused on making various computer interfaces more usable, thus improving the user experience. This study's objectives were to evaluate and enhance the user interface of the University of Baghdad's implementation of an online academic management system using the effectiveness, time-based efficiency, and satisfaction rates that comply with the task questionnaire process. We made a variety of interfaces f
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThis research focused on clarifying the relationship strategic decisions for operations management & performance excellence organizational, The research emerges from a problem which explained by many application questions. Special questionnaire has been prepared for this purpose distributed (72) to sample of management levels (Top, middle) in the General company for mining industries and aquatic Insullation & the General company of batteries industry, The research has tried to test a number hypotheses related to the relation and regression among the variables of the research, and the differences among the <
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
Introduction: Methadone hydrochloride (MDN) is an effective pharmacological substitution treatment for opioids dependence, adopted in different countries as methadone maintenance treatment (MMT) programmes. However, MDN can exacerbate the addiction problem if it is abused and injected intravenously, and the frequent visits to the MMT centres can reduce patient compliance. The overall aim of this study is to develop a novel extended-release capsule of MDN using the sol-gel silica (SGS) technique that has the potential to counteract medication-tampering techniques and associated health risks and reduce the frequent visits to MMT centres. Methods: For MDN recrystallisation, a closed container method (CCM) and hot-stage method (HSM) were conduc
... Show MoreFor many years, the construction industry damages have been overlooked such as unreasonable consumption of resources in addition to producing a lot of construction waste but with global awareness growth towards the sustainable development issues, the sustainable construction practices have been adopted, taking into account the environment and human safety. The research aims to propose a management system for construction practices which could be adopted during constructing different types of sustainable buildings besides formulating flowcharts which clarify the required whole phases of sustainable buildings life cycle. The research includes two parts: theoretical part which generally ,handles the sustainability concepts at construction i
... Show More