Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost and time) for the maintenance of wastewater projects. The output shows there is a high correlation (R) between real and expected cost with 95.4%, minimized testing error (8.5%), and training error (19%). The mean absolute present error (MAPE) and Average Accuracy Percentage (AA) are (13.9% and 86.1%) respectively. Also, the results showed a strong correlation (R) between actual and predicted time (99.1%), minimized testing error (8%), and an additional MAPE% and AA% with (11.7% and 88.3%) respectively. These models are in agreement with the real values, as well as gives good prediction for future maintenance projects.
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreAbstract
This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model
... Show MoreThe Research aims to investigate into reality in terms of planning and scheduling management process for sake the implementation and maintenance of irrigation and drainage projects in the Republic of Iraq, with an indication of the most important obstacles that impede the planning and scheduling management process for these projects and ways of addressing them and minimizing their effects. For the purpose of achieving the goal of the research, a sci
... Show MoreThe construction industry in Iraq suffers from many problems, perhaps the most important of which is the delay in time and the increase in costs. Therefore, it was necessary to try to adopt a new methodology that would help in overcoming these problems. It was suggested to combine building information modeling with the agile management approach because this technique and methodology is modern and helps in reducing time and cost and improving quality. This paper aims to know the status of using Building Information Modeling (BIM) and Agile Project management (APM) in Iraq and to shed light on the merging of this integration, explaining the benefits, difficulties, and workflow practices, finding the most influencing factors on the tim
... Show MoreThe avoidance of failure in construction projects is not an easy task, which makes the failure of the construction project to achieve its objectives a major problem experienced by all countries in the world, especially Iraq. Where nearly two-thirds of the construction projects in the world have been suffered by significant problems as an increase in the cost of the project, delay in the specified duration for execution, and stopping the project. Therefore it is required to study and apply new methods for managing the construction project to ensure its success and achieve its objectives. The aim of this study is to study the Agile project management method and its impact on the construction project. In addition, to identi
... Show MoreThe research problem is that most of the construction projects exceed the planned value, due to the failure to implement the plans on time. The current study aims to monitor the implementation of the project and for each of the executed tasks of the table of quantities in order to detect deviations at the time they occur, evaluate the time and cost performance, and then identify the areas of waste and analyze the implementation of each task in order to diagnose the underlying problems and find possible and applicable solutions in the environment Iraqi. The research was applied in one of the companies specialized in the field of construction projects, and one of the most important conclusions reached is the possibility of applying
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreSuggestion Plan for the Reclassification of U.N Publications in Central Library
Software Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show More