Preferred Language
Articles
/
joe-1608
Artificial Neural Network Model for Wastewater Projects Maintenance Management Plan
...Show More Authors

Wastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost and time) for the maintenance of wastewater projects. The output shows there is a high correlation (R) between real and expected cost with 95.4%, minimized testing error (8.5%), and training error (19%). The mean absolute present error (MAPE) and Average Accuracy Percentage (AA) are (13.9% and 86.1%) respectively. Also, the results showed a strong correlation (R) between actual and predicted time (99.1%), minimized testing error (8%), and an additional MAPE% and AA% with (11.7% and 88.3%) respectively. These models are in agreement with the real values, as well as gives good prediction for future maintenance projects.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Australian Journal Of Mathematical Analysis And Applications
Formulation of approximate mathematical model for incoming water to some dams on Tigris and Euphrates Rivers using spline function
...Show More Authors

n this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.

View Publication
Scopus
Publication Date
Wed Jul 01 2020
Journal Name
Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Dec 24 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
A Comparative Study for the Accuracy of Three Molecular Docking Programs Using HIV-1 Protease Inhibitors as a Model
...Show More Authors

Flexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzy

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jun 30 2017
Journal Name
Journal Of Engineering
Performance Evaluation of a PID and a Fuzzy PID Controllers Designed for Controlling a Simulated Quadcopter Rotational Dynamics Model
...Show More Authors

This work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Applied Sciences
Multiobjective Optimization of Stereolithography for Dental Bridge Based on a Simple Shape Model Using Taguchi and Response Surface Methods
...Show More Authors

Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Kirkuk University Journal For Agricultural Sciences
THE IMPORTANCE OF HAVING SOME BASIC COMPETENCIES AMONG WORKERS IN DIGITAL AGRICULTURAL EXTENSION FROM THE POINT OF VIEW OF SENIOR MANAGEMENT, MIDDLE MANAGEMENT AND HIGHER DEGREE HOLDERS
...Show More Authors

The research aims to identify the availability of some basic competencies that are required to be available to workers in digital agricultural Extension from the point of view of senior management, middle management, and, employees with Post-graduate education degrees, represented by the following: Transition to digital agricultural Extension for sustainable and smart family farms, benefiting from international expertise and experiences in applying for Digital agricultural Extension, preparing and implementing Extension messages through platforms, factors affecting the effectiveness of digital agricultural Extension and its platforms, following up and evaluating the activities and programs of the digital Extension platform. The research pop

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 07 2021
Journal Name
Bioremediation Journal
Bioremediation of real-field slaughterhouse wastewater associated with power generation in algae-photosynthetic microbial fuel cell
...Show More Authors

View Publication
Crossref (8)
Clarivate Crossref
Publication Date
Tue Jan 13 2015
Journal Name
European Journal Of Scientific Research
Determination of Priority Pollutant Phenols in PetroleumRefinery Wastewater and Tigris River Water by SPE-HPLC-UV
...Show More Authors

A solid Phase Extraction (SPE) followed by HPLC-UV method is described for the simultaneous quantitative determination of nine priority pollutant phenols : Phenol, 2- and 4-Nitrophenol, 2,4-Dimethylphenol, 2-, 2,4-Di-, 2,4,6-Tri-, and Penta- chlorophenol, 4 Chloro-3-methylphenol. The phenols were separated using a C-18 column with UV detector at wave length of 280nm. The Flow of mobile phase was isocratic consisted of 50:50 Acetonitrile: phosphate buffer pH=7.1, column temperature 45 C°, Flow Rate 0.7 ml/min. Calibration curves were linear (R2 = 0.9961-0.9995). The RSDs (1.301-5.805)%, LOD(39.1- 412.4) µg/L, LOQ(118.5-1250.8) µg/L, the Robustness (1.55-4.89), Ruggedness (2.82-4.00), Repeatability (2.1-4.95), Recoveries%

... Show More
Publication Date
Fri Mar 31 2017
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Ni(II), Pb(II), and Cu(II) from Industrial Wastewater by Using NF Membrane
...Show More Authors

This article reviews the technical applicability of nanofiltration membrane process for the removal of nickel, lead, and copper ions from industrial wastewater.

Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50, 100, 150 and 200 ppm), under different pressures (1, 2, 3 and 4 bar), temperatures (10, 20, 30 and 40 oC), pH (2, 3, 4, 5 and 5.5), and flow rates (1, 2, 3 and 4 L/hr), were prepared and subjected treated by NF systems in the laboratory. Suitable NF membrane was chosen after testing a number of NF membranes (University of Technology-Baghdad), in terms of production and removal. NF system was capable of removing more than (85%, 78%, and 66% for Ni(II

... Show More
View Publication Preview PDF