In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulation assumptions were three-dimensional, transient, and laminar flow was used. The result for the PCMs of performance, temperature distribution, and liquid fraction during the discharge process were compared to each other. Furthermore, the Nusselt number was analyzed. The result showed that the increase in thermal conductivity of PCM reduces the time of the solidification process by 20%. The performance of LHTESS for case 2 is 63.2%, whereas for case1 is 54.6%.
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
In this study , Iraqi Bentonite clay was used as a filler for polyvinyl chloride polymer. Bentonite clay was prepared as a powder for some certain particle size ,followed by calcinations process at (300,700,900) OC ,then milled and sieved. The selected sizes were D ~75 µm and D ~150. After that polyvinyl Al-Cohool solution prepared and used as a coated layer covered the Bentonite powder before applied as a filler ,followed by drying , milling and sieving for limited recommend sizes. polyvinyl chloride solutions were prepared and adding of modified Bentonite power at certain quantities were followed .Sheet of these variables on the mechanical and thermal properties of the prepared reinforced particular polyvinyl chloride composite
... Show MoreThe seismic can be threatened the stability of the flexible body of the earth dam and can cause completely damaged or deformation on their embankment. Therefore, a geotechnical engineer needs to know the effect of earthquakes on earth structures. The change in the seismic zone that recently Iraq affected is the reason for this research, in general, in 2017, the whole of Iraq, and in particular the region, where the Al-Wand earth dam (the subject of the study) is located, was exposed to several earthquakes. This research project mainly aims to study the behavior of Al-Wand earth dam under seismic load in different conditions by simulating Al-Wand earth dam through numerical modeling an
This paper demonstrates the construction designing analysis and control strategies for fully tracking concentrated solar thermal by using programmable logic control in the city of Erbil-Iraq. This work used the parabolic dish as a concentrated solar thermal. At the focal point, the collected form of energy is used for heating a (water) in the receiver, analyzing this prototype in real-time with two different shapes of the receiver and comparing the results. For tracking the parabolic dish, four light-dependent resistors are used to detect the sun's position in the sky so that the tracking system follows it to make the beam radiation perpendicular to the collector surface all of the time during the day for maximum solar p
... Show MoreThe purpose of this paper is to depict the effect of adding a hydraulic accumulator to a hydraulic system. The experimental work includes using measuring devices with interface to measure the pressure and the vibration of the system directly by computer so as to show the effect of accumulator graphically for real conditions, also the effects of hydraulic accumulator for different applications
have been tested. A simulation analysis of the hydraulic control system using MATLAB.R2010b to study was made to study the stability of the system depending on the transfer function, to estimate the effect of adding the accumulator on stability of the system. A physical simulation test was made for the hydraulic system using MATLAB to show the ef
The paper is concerned with, the behavior of the hydrostatic thrust bearings lubricated with liquid-solid lubricants using Einstein viscosity formula, and taking into account the centrifugal force resulting from high speed. Also studied is the effect of the bearing dimensions on the pressure, flow rate, load capacity, shear stress, power consumption and stiffness.
The theoretical results show an increase in load capacity by (8.3%) in the presence of solid graphite particles with concentration of (16%) by weight as compared with pure oil, with increasing shear stress. .
In general the performance of hydrostatic thrust bearings improve for load carrying capacity, volume flow rate,
... Show MoreNumerical study of separation control on symmetrical airfoil, four digits (NACA
0012) by using rotating cylinder with double steps on its upper surface based on the computation of Reynolds-average Navier- Stokes equations was carried out to find the optimum configuration of unconventional airfoil for best aerodynamics performance. A model based on collocated Finite Volume Method was developed to solve the governing equations on a body-fitted coordinate system. A revised (k-w) model was proposed as a known turbulence model. This model was adapted to simulate the control effects of rotating cylinder. Numerical solutions were performed for flow around unconventional airfoil with cylinder to main stream velocities ratio in the range
... Show MoreBackground: Bone mineral density (BMD) has been assessed using Dual-Energy X-ray absorptiometry (DEXA). This procedure is considered to be of vital importance in assessing the general condition of individuals concerning their skeletal mineralization. BMD is measured according to the results of the DEXA examination of the vertebral column and pelvis. Although diabetes mellitus (D.M.)is known to affect BMD, the information regarding this relationship is not currently particularly clear. Objective: This study concentrates on the point that the assessment of BMD for the vertebral column is insuffi-cient to give a realistic and correct picture of the mineralization of the remaining part of the skeleton. Besides, this study elicited a gen
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show More