The finite element method has been used in this paper to investigate the behavior of precast reinforced concrete dapped-ends beams (DEBs) numerically. A parametric investigation was performed on an experimental specimen tested by a previous researcher to show the effect of numerous parameters on the strength and behavior of RC dapped-end beams. Reinforcement details and steel arrangement, the influence of concrete compressive strength, the effect of inclined load, and the effect of support settlement on the strength of dapped-ends beams are examples of such parameters. The results revealed that the dapped-end reinforcement arrangement greatly affects the behavior of dapped end beam. The failure load decreases by 25% when insufficient development length for main dapped-end reinforcement is provided, and nib shear reinforcement has less effect than nib main reinforcement. The results also showed that the shear strength of dapped-end beams increased as concrete strength increased. When the compressive strength of concrete increased by 100% led to an enhancement of strength capacity by about 34%. The strength of the dapped-ends beams is significantly affected by the settlement of the supports.
The aim of this paper is to evaluate the rate of contamination in soils by using accurate numerical method as a suitable tool to evaluate the concentration of heavy metals in soil. In particular, 2D –interpolation methods are applied in the models of the spread the metals in different direction.The paper illustrates the importance of the numerical method in different applications, especially nvironment contamination. Basically, there are many roles for approximating functions. Thus, the approximating of function namely the analytical expression may be expressed; the most common type being is polynomials, which are the easy implemented and simplest methods of approximation. In this paper the divided difference formula is used and extended
... Show MoreThe activation energy and optical band gap of different regions (p-type) polysilicon have been measured. Both microscopic studies and current-voltage characteristics of diodes prepared on different surface regions were carried out. Comparison of diodes parameters and microscopic studies indicate that the type of angles between boundaries has a significant effect on diodes parameters while the boundary lengths per unit area has less effect. The mechanism of Al-interaction with grain boundaries and their intersecting points at different temperature were also studies. The X-ray fluorescence spectrometry has been used for detection of diffused A1%.
In this work, we studied the effect of power variation on inductively coupled plasma parameters using numerical simulation. Different values were used for input power (750 W-1500 W), gas temperature 300K, gas pressure (0.02torr), 5 tourns of the copper coil and the plasma was produced at radio frequency (RF) 13.56 MHZ on the coil above the quartz chamber. For the previous purpose, a computer simulation in two dimensions axisymmetric, based on finite element method, was implemented for argon plasma. Based on the results we were able to obtain plasma with a higher density, which was represented by obtaining the plasma parameters (electron density, electric potential, total power, number density of argon ions, el
... Show MoreTopological indices provide important insights into the structural characteristics of molecular graphs. The present investigation proposes and explores a creative graph on a finite group G, which is known as the RIG. This graph is designated as ΓRS G2(4) indicating a simple undirected graph containing elements of G. Two distinct ertices are regarded as nearly the same if and only if their sum yields a non-trivial involution element in G. RIGs have been discovered in various finite groups. We examine several facets of the RIG by altering the graph through the conjugacy classes of G. Furthermore, we investigate the topological indices as applications in graph theory applying the distance matrix of the G2(4) group.
Three-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
Background: This study was formulated to compare the effect of 5%hydrofluoric acid in comparison to 37%phosphoric acid with and without the application of silane on bond strength of composite to porcelain. Materials and Methods: Specimen preparation was divided in to two phases, metal-disks fabrication (8mm-diameter and 4mm-thickness) and ceramic veneering. Thirty two specimens were prepared, sandblasted with 50 μm aluminum oxide, and divided into four groups of eight samples. Groups I and III were etched with 37%phosphoric acid while groups II and IV were etched with 5%hydrofluoric acid; and groups I and II were silaneted while groups III and IV were not. Heliobond, and resin composite were applied to each specimen using a plastic transpa
... Show MoreIn this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening be
The present work divided into two parts, first the experimental side which included the
measuring of the first natural frequency for the notched and unnotched cantilever composite beams
which consisted of four symmetrical layers and made of Kevlar- epoxy reinforced. A numerical
study covers the effect of notches on the natural frequencies of the same specimen used in the
experimental part. The mathematical model for the beam contains two open edges on the upper
surface. The effect of the location of cracks relative to the restricted end, depth of cracks, volume
fraction of fibers and orientation of the fiber on the natural frequencies are explored. The results
were calculated using the known engineering program (ANSY