Every year, millions of tons of waste glass are created across the globe. It is disposed of in landfills, which is unsustainable since it does not disintegrate into the environment. This study aims to produce reactive powder concrete by using recycled glass powder and determine the influence on the mechanical properties. This study investigated the effect of partial replacement of cement with recycled glass powder at two percentages (0, 20) % by weight of cement on some mechanical properties (Fresh density, Splitting tensile strength, Impact Strength, and voids%) of reactive powder concrete containing 1 % micro steel (MSRPC). Furthermore, using steam curing for (5 hours) at 90 degrees celsius after hardening the sample directly, RPC was produced using local cement, silica fume, and a super plasticizer, with a w/c (0.2). It was found the Fresh density increased by about (7.27%), splitting tensile strength increased by about (23.5%) at age 28day, energy that causes 1-st crack increased by about (77.7%), energy that causes ultimate failure increased by about (54.9%) at age 60 days, and a reduction in the voids % by about (12.5)% at age 28 day compared with the reference mixture.
Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
Cadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MoreIn this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif
... Show MoreExposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreA new light-weight nanocarbon prepared by spray-drying method to obtain particle size is 21.7 nm based of polylactic acid biodegradable film in antistatic packaging .Bio carbon (biochar) is obtained from plants and soils to naturally absorb and store carbon dioxide from the atmosphere . Therefor it has been used to support biodegradable polylactic acid (PLA) with to obtain 100% recyclable material.
Using plasticizer thymol of polylactic acid and biochar (bio carbon) as composites were prepared by a solution casting method with (0.5-10)wt% biochar. The composites characterized by FTIR, electrical conductivity, mechanical properties , contact angle and Colar and Brightness . Results show th
... Show MorePolymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction o
... Show MorePolymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction of (4% for AL
... Show More