There are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conductivity, and absorption test, and the experimental results obtained confirmed the possibility of using the recycling of clay bricks waste as aggregates instead of natural aggregates and reducing the weight, as well as recycling clay bricks waste and using it as a powder. It contains suitable pozzolanic that can be used as a supplementary cement material that reduces the cement content in concrete used to produce load-bearing units.
Several schottky diodes were fabricated from polyaniline/ Carbon nanotube (single and multiwalled) composites. These composites were synthesized with different concentration and two carbon nanotubes types, Single and Multi-Walled Carbon Nanotubes (SWCNT & MWCNT). Aluminum and silver paste were chosen as schottky and ohmic contact respectively. physical and electrical were used to studied these composite by using Atomic Force Microscopy (AFM) and electrical measurements. The Root Mean Square RMS surface roughness of the composite samples was found to be around 4nm. The currentvoltage characteristic were measurements for all samples in the bias range ±15V at room temperature. The results shows the increasing in carbon nanotubes concentration
... Show MoreThe effects of BaCl2 dopant on the optical properties of poly (vinyl alcohol) have been investigated. Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using UV/VIS technique in order to estimate the kind of transition which was found to be indirect transition. The value of the optical energy gap was decrease with increasing dopant concentration.
Refractive index, extinction coefficient and Urbach tail have been also investigated; it was found that all the above parameters affects by doping.
The electrical characteristics of polyvinyl alcohol PVA doped with different concentrations (0, 1, 2, 3 and 4wt%) of sodium iodide NaI powder were studied. The films are prepared using solution casting technique, in order to investigate the effect of sodium iodide NaI additions on the electrical properties of PVA host. The D.C conductivity measured by measuring the D.C electrical resistance using the Keithly Electrometer type 616C, and for different temperatures ranging from 30 – 70oC.
The dielectric properties measured by measuring the capacitor and the loss
... Show MoreChemical Methodologies (CHEMM)

The effect of adding different volume of coumarin dye (5, 15, 25 and 35) ml on optical properties of Poly (Methyl Meth Acrylate) was studied. Films of pure PMMA and PMMA with different volume of coumarin dye (5, 15, 25 and 35) ml were prepared using the casting technique. Transmission and absorption of the films were measured by using UV-VIS spectrometer technique type (100 Conc), in order to assess the type of transmission which was found an indirect transition. An optical energy gap of pure PMMA is (4.95e v) and after adding coumarin with volume (25, 35) ml, the energy gap for PMMA decrease by (0.05) compere to pure PMMA films and addition energy gap appear equal to (4.1 e v). It was found that the absorption coefficient, extinction coeff
... Show MoreThin films of CuPc of various thicknesses (150,300 and 450) nm have been deposited using pulsed laser deposition technique at room temperature. The study showed that the spectra of the optical absorption of the thin films of the CuPc are two bands of absorption one in the visible region at about 635 nm, referred to as Q-band, and the second in ultra-violet region where B-band is located at 330 nm. CuPc thin films were found to have direct band gap with values around (1.81 and 3.14 (eV respectively. The vibrational studies were carried out using Fourier transform infrared spectroscopy (FT-IR). Finally, From open and closed aperture Z-scan data non-linear absorption coefficient and non-linear refractive index have been calculated res
... Show MoreThis paper focuses firstly on the production of monomers bis (2-hydroxyethyl) terephthalate (BHET) and oligomers by using two different form of MgO light active and Nano Magnesium oxide with different weight ratio (0.15, 0.25 and 0.5) by using chemical recycling glass condenser at 190 ˚C. The second purpose is to study the effect of catalyst ratio, time of reaction and yield of products of the product. Elemental analysis for Carbon –Hydrogen and Nitrogen (CHN), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) have been investigated. Results indicated the catalytic activity was found to correlate with surface area; however, LA MgO has shown an exceptional activity, still it is h
... Show MoreThis study synthesized nanocomposite photocatalyst materials from a mixture of Cu2O nanoparticles, ZnO nanoparticles, and graphene oxide (GO) through coprecipitation and hydrothermal methods. This study aims to determine the optimum composition of Cu2O/ZnO/GO nanocomposites in degrading methylene blue. The nanocomposite was synthesized in two steps: 1 the synthesis of Cu2O and ZnO nanoparticles through the coprecipitation method and the preparation of GO through the modified Hummer method. 2 The preparation of Cu2O and ZnO nanoparticles mixtures with GO through the hydrothermal method to form Cu2O/ZnO/GO nanocomposites. The adsorption-photocatalysis process of methylene blue
... Show MoreModifying of HY/Zeolite is by loading nickel for applying catalyst in thermal catalytic cracking of furfural extract-40 from the lubricating base oil unit. The study involved the characterizing of HY-zeolite and promoted catalyst with nickel by X-ray diffraction analysis, Scanning electron microscopy (SEM), BET (Brunauer, Emmett, and Teller), and infrared ray analyses FTIR. The catalytic thermal cracking tubular reactor with a fixed bed with two type catalysts; HY/zeolite and Ni HY/zeolite, individually at a temperature of 580oC with LHSV 5h-1 was investigated. The results indicated that increase the conversion of catalytic cracking of furfural extract-40 also increases the yield of useful petroleum
... Show More