Preferred Language
Articles
/
joe-1593
Mechanical Integrity of Printed Circuit Heat Exchanger
...Show More Authors

The printed circuit heat exchanger is a plate type heat exchanger with a high performance and compact size. Heat exchangers such as this need a unique form of bonding and other techniques to be used in their construction. In this study, the process of joining plates, diffusion bonding, was performed and studied. A special furnace was manufactured for bonding purposes. The bonding process of copper metal was carried out under specific conditions of a high temperature up to 700 oC, high pressure of 3.45 MPa, and in an inert environment (Argon gas) to make tensile samples. The tensile samples are cylindrical shapes containing groves representing the flow channels in the printed circuit heat exchanger and checking their tensile strength in addition to the standard shape of the tensile specimen to check the yield and ultimate strength of the copper. A higher tensile strength was obtained for diffusion bonded specimens than the yield strength of copper, up to 1.35 times the copper yield strength. The tensile strength decreases with the increase in the number of groves and the decrease in the distance between one grove and another. This is because the stress is concentrated in the sharp corners. A prototype heat exchanger of two plates and a header to be tested for its compressive strength was also manufactured. The results showed that the bond bears an air pressure of up to 8 bar without fail. It was also found to withstand a hydraulic pressure of up to 60 bar until it reached failure.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Numerical Investigations on Heat Flow of Nanofluids in Ribs Tube Configurations
...Show More Authors

Abstract

In this paper presents two dimensional turbulent flow of different nanofluids and ribs configuration in a circular tube have been numerically investigation using FLUENT 6.3.26. Two samples of CuO and, ZnO nanoparticles with 2% v/v concentration and 40 nm as nanoparticle diameter combined with trapezoidalribs with aspect ratio of p/d=5.72 in a constant tube surface heat flux were conducted for simulation. The results showed that heat flow as Nusselt number for all cases raises with Reynolds number and volume fraction of nanofluid, likewise the results also reveal that ZnO with volume fractions of 2% in trapezoidal ribs offered highest Nusselt number at Reynolds number of Re= 30000.

Key

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jul 21 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Study of the Heat Transfer Behavior in Helical Microcoil Tube
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Sep 02 2023
Journal Name
Al-khwarizmi Engineering Journal (alkej)
Numerical Investigations on Heat Flow of Nanofluids in Ribs Tube Configurations
...Show More Authors

Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Investigation of heat transfer phenomena and flow behavior around electronic chip
...Show More Authors

Computational study of three-dimensional laminar and turbulent flows around electronic chip (heat source) located on a printed circuit board are presented. Computational field involves the solution of elliptic partial differential equations for conservation of mass, momentum, energy, turbulent energy, and its dissipation rate in finite volume form. The k-ε turbulent model was used with the wall function concept near the walls to treat of turbulence effects. The SIMPLE algorithm was selected in this work. The chip is cooled by an external flow of air. The goals of this investigation are to investigate the heat transfer phenomena of electronic chip located in enclosure and how we arrive to optimum level for cooling of this chip. These par

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2022
Journal Name
Journal Of Engineering
Conjugate Heat Transfer of Laminar Air Flow in Rectangular Mini Channel
...Show More Authors

Conjugate heat transfer has significant implications on heat transfer characteristics, particularly in thick wall applications and small diameter pipes. In this study, a three-dimensional numerical investigation was carried out using commercial CFD software “ANSYS FLUENT” to study the influence of conjugate heat transfer of laminar flow in mini channels at constant heat flux wall conditions. Two parameters were studied and analyzed: the wall thickness and thermal conductivity and their effect on heat transfer characteristics such as temperature profile and Nusselt number. Thermal conductivity of (0.25, 10, 202, and 387) W/m2C and wall thickness of (1, 5, and 50) mm were used for a channel of (1*2) mm cross

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
NATURAL CONVECTION HEAT TRANSFER IN AN INCLINED CIRCULAR CYLINDER
...Show More Authors

Experiments were carried out to investigate natural convection heat transfer in an inclined uniformly heated circular cylinder . The effects of surface heat flux and angle of inclination on the temperature and local Nusselt number variations along the cylinder surface are discussed . The investigation covers heat flux range from 92 W/m² to 487 W/m², and angles of inclination 0° ( horizontal) , 30° , 60° and 90° (vertical) . Results show an increase in the natural convection as heat flux increases and as angle of inclination moves from vertical to horizontal position. An empirical equation of average Nusselt number as a function of Rayliegh number was deduced for each angle of inclination .

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 03 2017
Journal Name
Chalcogenide Letters
INFLUENCE OF HEAT TREATMENT ON SOME PHYSICAL PROPERTIES OF Zn0.9Sn0.1S THIN FILMS
...Show More Authors

Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Experimental Evaluation of Thermal Performance of Solar Assisted Vapor Compression Heat Pump
...Show More Authors

The thermal performance of indirect expansion solar assisted heat pump, IX-SAHP, was investigated experimentally under Iraqi climate. An Indirect-Solar Assisted Heat Pump system was designed, built, instrumented and tested. Experimental tests were conducted by varying the controlling parameters to investigate their effects on the thermal performance of the IX-SAHP such as cooling water flow rate, heating water flow rate, ambient temperature and solar radiation intensity. The investigation covered values of cooling water flow rate of (2, 3, 4, 5 l/min) and heating water flow rate of (2, 3, 4, 5 l/min) under meteorological condition of Baghdad from November 2014 to January 2015.

The results indicated that the performance of the IX-

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technolog
Effect Of heat Treatment On The Optical Properties Of CuInSe2 Thin Films
...Show More Authors

CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.

View Publication
Publication Date
Thu Jan 07 2016
Journal Name
International Journal Of Innovative Research In Science, Engineering And Technology
Effect Of heat Treatment On The Optical Properties Of CuInSe2 Thin Films
...Show More Authors

CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.

Preview PDF