The printed circuit heat exchanger is a plate type heat exchanger with a high performance and compact size. Heat exchangers such as this need a unique form of bonding and other techniques to be used in their construction. In this study, the process of joining plates, diffusion bonding, was performed and studied. A special furnace was manufactured for bonding purposes. The bonding process of copper metal was carried out under specific conditions of a high temperature up to 700 oC, high pressure of 3.45 MPa, and in an inert environment (Argon gas) to make tensile samples. The tensile samples are cylindrical shapes containing groves representing the flow channels in the printed circuit heat exchanger and checking their tensile strength in addition to the standard shape of the tensile specimen to check the yield and ultimate strength of the copper. A higher tensile strength was obtained for diffusion bonded specimens than the yield strength of copper, up to 1.35 times the copper yield strength. The tensile strength decreases with the increase in the number of groves and the decrease in the distance between one grove and another. This is because the stress is concentrated in the sharp corners. A prototype heat exchanger of two plates and a header to be tested for its compressive strength was also manufactured. The results showed that the bond bears an air pressure of up to 8 bar without fail. It was also found to withstand a hydraulic pressure of up to 60 bar until it reached failure.
Catalytic reforming of naphtha occupies an important issue in refineries for obtaining high octane gasoline and aromatic compounds, which are the basic materials of petrochemical industries. In this study, a novel of design parameters for industrial continuous catalytic reforming reactors of naphtha is proposed to increase the aromatics and hydrogen productions. Improving a rigorous mathematical model for industrial catalytic reactors of naphtha is studied here based on industrial data applying a new kinetic and deactivation model. The optimal design variables are obtained utilizing the optimization process in order to build the model with high accuracy and such design parameters are then applied to get the best configuration of this pro
... Show MoreThere are varieties of reasons lead for drilling horizontal wells rather than verticals. Increasing the recovery of oil, especially from thin or tight reservoir permeability is the most important parameter. East Baghdad oil field considered as a giant field with approximately more than 1billion barrel of a proved reserves accompanying recently to low production rate problems in many of the existing wells. It is important to say that presence of of horizontal wells in East Baghdad field especially by converting some of already drilled wells by re-entry drilling horizontal sections may provide one of best solutions for the primary development stage in East Baghdad field which may be followed by drilling new horizont
... Show MoreThe present study was conducted to investigate the antimicrobial activity of the hot water and the hot ethanolic extracts of Thuja orientalis against some pathogenic microorganisms (Staphylococcus aureus, Pseudomonas aeruginosa, Eschericha coli, Proteus mirrablis, Salmonilla typhi, Klebsiella pneumoniae, Bacillus cereus, Bacillus subtilus, Acinobacter, Staphylococcus epidermidis and Candida albicans). Results showed that both the water and alcoholic extracts of this plant exert marked inhibitory effect against all the bacterial isolates and yeast and at different ratio, and it was shown that ethanolic extract was more effective in microbial inhibition than the water extract. Maximum inhibition (16 mm) was recorded against Staphylococcus aur
... Show MoreThis research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using
... Show MoreThis study investigates consecutive reaction assisted by pervaporation for the first time. It studies the saponification of diethyladipate DA with sodium hydroxide NaOH solution synchronous with separating ethanol from the reaction mixture through an aqueous – organic membrane. The effect of time on some variables such as: permeated ethanol concentration EtOH wt%, separation factor (α), concentration of NaOH solution CB in the reaction medium and the conversion of DA to monoethyladipate (the intermediate product) was studied. It was shown that EtOH wt% and the conversion increased with increasing time unlike CB but (α) showed the existence of maximum value during the time of experiment. The process of reaction assisted by pervaporation
... Show MoreThe diagnosis of acute appendicitis (AA) sometimes is illusive and the accompanying clinical and laboratory manifestations cannot be used for definitive diagnosis. Objective: This study aimed to evaluate the diagnostic value of neutrophil/lymphocyte ratio (NLR) in detection of AA. Materials and Methods: This is a cross-sectional study that included a total of 80 adult patients with AA and 62 age- and gender-matched patients with abdominal pain due to causes other than AA. Three milliliter of peripheral blood were collected from each participant. The NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count. Receiver operating characteristic curve was used to assess the diagnostic value of NLR in detection
... Show MoreThe scarcity of irrigation water requires procedures of specific. One of these procedures is the implementation of the rationing system (a period of the irrigation followed by a period of the dry). This system can have an impact on the properties of irrigation channels. Therefore, the study of rationing system for irrigation channels is important in both water resources and civil engineering, especially if they are constructed with gypseous soil. In order to assess the rationing system on gypseous canals stabilized with a specific ratio of cement, practical experiments were conducted to detect the effect of wetting and drying cycles on the physical and hydraulic behavior of this soil and calculation of some properties of soil such a
... Show More